Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ethnic-specific genetic susceptibility loci for endometriosis in Taiwanese-Han population: a genome-wide association study

Abstract

Endometriosis is a common gynecological disorder affecting around 10% of reproductive-age women. Although many hypotheses were proposed, genetic alteration has been considered as one of the key factors promoting pathogenesis. Due to racial/ethnic disparities in the process of hormone regulation and nutrition metabolism, a genome-wide association study (GWAS) with 2794 cases and 27,940 controls was conducted in a Taiwanese-Han population. Our study identified five significant susceptibility loci for endometriosis, and three of them, WNT4 (on the 1p36.12), RMND1 (6q25.1), and CCDC170 (6q25.1), have been previously associated with endometriosis across different populations, including European and Japanese descent cohorts. Other two including C5orf66/C5orf66-AS2 (5q31.1) and STN1 (10q24.33) are newly identified ones. Functional network analysis of potent risk genes revealed the involvement of cancer susceptibility and neurodevelopmental disorders in endometriosis development. In addition, long non-coding RNAs (lncRNAs) C5orf66 and C5orf66-AS2 can interact with many RNA-binding proteins (RBPs) which can influence RNA metabolic process, mRNA stabilization, and mRNA splicing, leading to dysregulation in tumor-promoting gene expression. Those findings support clinical observations of differences in the presentation of endometriosis in Taiwanese-Han population with higher risks of developing deeply infiltrating/invasive lesions and the associated malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Giudice LC, Kao LC. Endometriosis. Lancet. 2004;364:1789–99.

    Article  PubMed  Google Scholar 

  2. Taylor RN, Yu J, Torres PB, Schickedanz AC, Park JK, Mueller MD, et al. Mechanistic and therapeutic implications of angiogenesis in endometriosis. Reprod Sci. 2009;16:140–6.

    Article  CAS  PubMed  Google Scholar 

  3. Kvaskoff M, Horne AW, Missmer SA. Informing women with endometriosis about ovarian cancer risk. Lancet. 2017;390:2433–4.

    Article  PubMed  Google Scholar 

  4. Nezhat F, Apostol R, Mahmoud M, el Daouk M. Malignant transformation of endometriosis and its clinical significance. Fertil Steril. 2014;102:342–4.

    Article  PubMed  Google Scholar 

  5. Kim HS, Kim TH, Chung HH, Song YS. Risk and prognosis of ovarian cancer in women with endometriosis: a meta-analysis. Br J Cancer. 2014;110:1878–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hadfield RM, Mardon HJ, Barlow DH, Kennedy SH. Endometriosis in monozygotic twins. Fertil Steril. 1997;68:941–2.

    Article  CAS  PubMed  Google Scholar 

  7. Treloar SA, Wicks J, Nyholt DR, Montgomery GW, Bahlo M, Smith V, et al. Genomewide linkage study in 1,176 affected sister pair families identifies a significant susceptibility locus for endometriosis on chromosome 10q26. Am J Hum Genet. 2005;77:365–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rahmioglu N, Nyholt DR, Morris AP, Missmer SA, Montgomery GW, Zondervan KT. Genetic variants underlying risk of endometriosis: insights from meta-analysis of eight genome-wide association and replication datasets. Hum Reprod Update. 2014;20:702–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sapkota Y, Steinthorsdottir V, Morris AP, Fassbender A, Rahmioglu N, De Vivo I, et al. Meta-analysis identifies five novel loci associated with endometriosis highlighting key genes involved in hormone metabolism. Nat Commun. 2017;8:15539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rahmioglu N, Mortlock S, Ghiasi M, Møller PL, Stefansdottir L, Galarneau G, et al. The genetic basis of endometriosis and comorbidity with other pain and inflammatory conditions. Nat Genet. 2023;55:423–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chang CY, Chang HW, Chen CM, Lin CY, Chen CP, Lai CH, et al. MUC4 gene polymorphisms associate with endometriosis development and endometriosis-related infertility. BMC Med. 2011;9:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang CY, Chen Y, Lin WC, Chen CM, Chen CP, Lee SC, et al. MUC2 polymorphisms are associated with endometriosis development and infertility: a case-control study. BMC Med Genet. 2012;13:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang CW, Chang CY, Lai MT, Chang HW, Lu CC, Chen Y, et al. Genetic variations of MUC17 are associated with endometriosis development and related infertility. BMC Med Genet. 2015;16:60.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kim JH, Kim TH, Kim YS, Jang WC, Ryu A, Hwang JY, et al. Mucin gene polymorphisms are associated with endometriosis in Korean women. Arch Gynecol Obstet. 2020;301:801–7.

    Article  CAS  PubMed  Google Scholar 

  15. Chang CY, Chen Y, Lai MT, Chang HW, Cheng J, Chan C, et al. BMPR1B up-regulation via a miRNA binding site variation defines endometriosis susceptibility and CA125 levels. PLoS ONE. 2013;8:e80630.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chang CY, Lai MT, Chen Y, Yang CW, Chang HW, Lu CC, et al. Up-regulation of ribosome biogenesis by MIR196A2 genetic variation promotes endometriosis development and progression. Oncotarget. 2016;7:76713–25.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chang CY, Tseng CC, Lai MT, Chiang AJ, Lo LC, Chen CM, et al. Genetic impacts on thermostability of onco-lncRNA HOTAIR during the development and progression of endometriosis. PLoS ONE. 2021;16:e0248168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chang CY, Yang L, Tse J, Lo LC, Tseng CC, Sun L, et al. Genetic variations in UCA1, a lncRNA functioning as a miRNA sponge, determine endometriosis development and the potential associated infertility via regulating lipogenesis. PLoS ONE. 2022;17:e0271616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Burchard EG, Ziv E, Coyle N, Gomez SL, Tang H, Karter AJ, et al. The importance of race and ethnic background in biomedical research and clinical practice. N Engl J Med. 2003;348:1170–5.

    Article  PubMed  Google Scholar 

  20. Huang T, Shu Y, Cai YD. Genetic differences among ethnic groups. BMC Genom. 2015;16:1093.

    Article  Google Scholar 

  21. Chiarella P, Capone P, Sisto R. Contribution of genetic polymorphisms in human health. Int J Environ Res Public Health. 2023;20:912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Butts S, Dokras A. Recognizing racial and ethnic disparities in women’s reproductive health is not enough. Fertil Steril. 2023;119:339–40.

    Article  PubMed  Google Scholar 

  23. Merkison JM, Chada AR, Marsidi AM, Spencer JB. Racial and ethnic disparities in assisted reproductive technology: a systematic review. Fertil Steril. 2023;119:341–7.

    Article  PubMed  Google Scholar 

  24. Bougie O, Nwosu I, Warshafsky C. Revisiting the impact of race/ethnicity in endometriosis. Reprod Fertil. 2022;3:R34–41.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Park HK, Ruterbusch JJ, Cote ML. Recent trends in ovarian cancer incidence and relative survival in the United States by race/ethnicity and histologic subtypes. Cancer Epidemiol Biomark Prev. 2017;26:1511–8.

    Article  Google Scholar 

  26. Harris HR, Peres LC, Johnson CE, Guertin KA, Beeghly A, Bandera EV, et al. Racial differences in the association of endometriosis and uterine leiomyomas with the risk of ovarian cancer. Obstet Gynecol. 2023;141:1124–38.

  27. Borrell LN, Elhawary JR, Fuentes-Afflick E, Witonsky J, Bhakta N, Wu AHB, et al. Race and genetic ancestry in medicine – a time for reckoning with racism. N Engl J Med 2021;384:474–80.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wei CY, Yang JH, Yeh EC, Tsai MF, Kao HJ, Lo CZ, et al. Genetic profiles of 103,106 individuals in the Taiwan Biobank provide insights into the health and history of Han Chinese. NPJ Genom Med. 2021;6:10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liao WL, Liu TY, Cheng CF, Chou YP, Wang TY, Chang YW, et al. Analysis of HLA variants and Graves’ disease and its comorbidities using a high resolution imputation system to examine electronic medical health records. Front Endocrinol. 2022;13:842673.

    Article  Google Scholar 

  30. Liu TY, Lin CF, Wu HT, Wu YL, Chen YC, Liao CC, et al. Comparison of multiple imputation algorithms and verification using whole-genome sequencing in the CMUH genetic biobank. Biomedicine. 2021;11:57–65.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liu TY, Liao CC, Chang YS, Chen YC, Chen HD, Lai IL, et al. Identification of 13 novel loci in a genome-wide association study on Taiwanese with hepatocellular carcinoma. Int J Mol Sci. 2023;24:16417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Browning BL, Zhou Y, Browning SR. A one-penny imputed genome from next-generation reference panels. Am J Hum Genet. 2018;103:338–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Feng YA, Chen CY, Chen TT, Kuo PH, Hsu YH, Yang HI, et al. Taiwan Biobank: a rich biomedical research database of the Taiwanese population. Cell Genom. 2022;2:100197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.

    Article  Google Scholar 

  35. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yang J, Lee SH, Wray NR, Goddard ME, Visscher PM. GCTA-GREML accounts for linkage disequilibrium when estimating genetic variance from genome-wide SNPs. Proc Natl Acad Sci USA. 2016;113:E4579–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.

    Article  CAS  PubMed  Google Scholar 

  38. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics. 2010;26:2336–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Choi SW, O’Reilly PF. PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience 2019;8:giz082.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zheng Y, Luo H, Teng X, Hao X, Yan X, Tang Y, et al. NPInter v5.0: ncRNA interaction database in a new era. Nucleic Acids Res. 2023;51:D232–9.

    Article  CAS  PubMed  Google Scholar 

  41. Fukunaga T, Iwakiri J, Ono Y, Hamada M. LncRRIsearch: a web server for lncRNA-RNA interaction prediction integrated with tissue-specific expression and subcellular localization data. Front Genet. 2019;10:462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51:D638–46.

    Article  CAS  PubMed  Google Scholar 

  43. Keenan AB, Torre D, Lachmann A, Leong AK, Wojciechowicz ML, Utti V, et al. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 2019;47:W212–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Albertsen HM, Chettier R, Farrington P, Ward K. Genome-wide association study link novel loci to endometriosis. PLoS ONE. 2013;8:e58257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Powell JE, Fung JN, Shakhbazov K, Sapkota Y, Cloonan N, Hemani G, et al. Endometriosis risk alleles at 1p36.12 act through inverse regulation of CDC42 and LINC00339. Hum Mol Genet. 2016;25:5046–58.

    CAS  PubMed  Google Scholar 

  46. Painter, O’Mara JN, Morris TA, Cheng THT AP, Gorman M, Martin L, et al. Genetic overlap between endometriosis and endometrial cancer: evidence from cross-disease genetic correlation and GWAS meta-analyses. Cancer Med. 2018;7:1978–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dunning AM, Michailidou K, Kuchenbaecker KB, Thompson D, French JD, Beesley J, et al. Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170. Nat Genet. 2016;48:374–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lengyel E, Li Y, Weigert M, Zhu L, Eckart H, Javellana M, et al. A molecular atlas of the human postmenopausal fallopian tube and ovary from single-cell RNA and ATAC sequencing. Cell Rep. 2022;41:111838.

    Article  CAS  PubMed  Google Scholar 

  49. Wilbur MA, Shih IM, Segars JH, Fader AN. Cancer implications for patients with endometriosis. Semin Reprod Med. 2017;35:110–6.

    Article  CAS  PubMed  Google Scholar 

  50. Williams C, Long AJ, Noga H, Allaire C, Bedaiwy MA, Lisonkova S, et al. East and South East Asian ethnicity and moderate-to-severe endometriosis. J Minim Invasive Gynecol. 2019;26:507–15.

    Article  PubMed  Google Scholar 

  51. Yen CF, Hamdan M, Hengrasmee P, Huang Z, Jeong K, Dao LA, et al. Improving the diagnosis of endometriosis in Asia-Pacific: Consensus from the Asia-Pacific Endometriosis Expert Panel for Endometriosis. Int J Gynaecol Obstet. 2023;163:720–32.

    Article  PubMed  Google Scholar 

  52. Peres LC, Risch H, Terry KL, Webb PM, Goodman MT, Wu AH, et al. Racial/ethnic differences in the epidemiology of ovarian cancer: a pooled analysis of 12 case-control studies. Int J Epidemiol. 2018;47:1011.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Arter ZL, Desmond D, Berenberg JL, Killeen JL, Bunch K, Merritt MA. Epithelial ovarian cancer survival by race and ethnicity in an equal-access healthcare population. Br J Cancer. 2024;130:108–13.

    Article  PubMed  Google Scholar 

  54. Chuang SC, Wu GJ, Lu YS, Lin CH, Hsiung CA. Associations between medical conditions and breast cancer risk in Asians: a nationwide population-based study in Taiwan. PLoS ONE. 2015;10:e0143410.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Munksgaard PS, Blaakaer J. The association between endometriosis and gynecological cancers and breast cancer: a review of epidemiological data. Gynecol Oncol. 2011;123:157–63.

    Article  PubMed  Google Scholar 

  56. Gremke N, Griewing S, Göhring J, Isselhard A, Wagner U, Kostev K, et al. Is there an association between endometriosis and subsequent breast cancer? A retrospective cohort study from Germany. Breast Cancer Res Treat. 2024;204:359–65.

  57. Tang Y, Liu L, Xu D, Zhang W, Zhang Y, Zhou J, et al. Interaction between astrocytic colony stimulating factor and its receptor on microglia mediates central sensitization and behavioral hypersensitivity in chronic post ischemic pain model. Brain Behav Immun. 2018;68:248–60.

    Article  CAS  PubMed  Google Scholar 

  58. Bashir ST, Redden CR, Raj K, Arcanjo RB, Stasiak S, Li Q, et al. Endometriosis leads to central nervous system-wide glial activation in a mouse model of endometriosis. J Neuroinflammation. 2023;20:59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, et al. Induction of human neuronal cells by defined transcription factors. Nature. 2011;476:220–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen J, Fuhler NA, Noguchi KK, Dougherty JD. MYT1L is required for suppressing earlier neuronal development programs in the adult mouse brain. Genome Res. 2023;33:541–56.

    Article  PubMed Central  Google Scholar 

  61. Alvarez-Bolado G. Development of neuroendocrine neurons in the mammalian hypothalamus. Cell Tissue Res. 2019;375:23–39.

    Article  CAS  Google Scholar 

  62. Weigel B, Tegethoff JF, Grieder SD, Lim B, Nagarajan B, Liu YC, et al. MYT1L haploinsufficiency in human neurons and mice causes autism-associated phenotypes that can be reversed by genetic and pharmacologic intervention. Mol Psychiatry. 2023;28:2122–35.

    Article  CAS  PubMed Central  Google Scholar 

  63. Ding C, Zhang C, Kopp R, Kuney L, Meng Q, Wang L, et al. Transcription factor POU3F2 regulates TRIM8 expression contributing to cellular functions implicated in schizophrenia. Mol Psychiatry. 2021;26:3444–60.

    Article  CAS  PubMed  Google Scholar 

  64. Charney AW, Ruderfer DM, Stahl EA, Moran JL, Chambert K, Belliveau RA, et al. Evidence for genetic heterogeneity between clinical subtypes of bipolar disorder. Transl Psychiatry. 2017;7:e993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Guo JZ, Xiao Q, Gao S, Li XQ, Wu QJ, Gong TT. Review of Mendelian randomization studies on ovarian cancer. Front Oncol. 2021;11:681396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chiang HL, Liu CJ, Hu YW, Chen SC, Hu LY, Shen CC, et al. Risk of cancer in children, adolescents, and young adults with autistic disorder. J Pediatr. 2015;166:418–23.e1.

    Article  PubMed  Google Scholar 

  67. He Q, Lin X, Chavez BL, Agrawal S, Lusk BL, Lim CJ. Structures of the human CST-Polα-primase complex bound to telomere templates. Nature. 2022;608:826–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zaug AJ, Goodrich KJ, Song JJ, Sullivan AE, Cech TR. Reconstitution of a telomeric replicon organized by CST. Nature. 2022;608:819–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Valentijn AJ, Saretzki G, Tempest N, Critchley HO, Hapangama DK. Human endometrial epithelial telomerase is important for epithelial proliferation and glandular formation with potential implications in endometriosis. Hum Reprod. 2015;30:2816–28.

    CAS  PubMed  Google Scholar 

  70. Hapangama DK, Turner MA, Drury JA, Quenby S, Saretzki G, Martin-Ruiz C, et al. Endometriosis is associated with aberrant endometrial expression of telomerase and increased telomere length. Hum Reprod. 2008;23:1511–9.

    Article  CAS  PubMed  Google Scholar 

  71. Kalmbach KH, Fontes Antunes DM, Dracxler RC, Knier TW, Seth-Smith ML, Wang F, et al. Telomeres and human reproduction. Fertil Steril. 2013;99:23–9.

    Article  CAS  PubMed  Google Scholar 

  72. Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene. 2011;30:1956–62.

    Article  CAS  PubMed  Google Scholar 

  73. Xu C, Zhai J, Fu Y. LncRNA CDKN2B-AS1 promotes the progression of ovarian cancer by miR-143-3p/SMAD3 axis and predicts a poor prognosis. Neoplasma. 2020;67:782–93.

    Article  CAS  PubMed  Google Scholar 

  74. Ma ML, Zhang HY, Zhang SY, Yi XL. LncRNA CDKN2B-AS1 sponges miR-28-5p to regulate proliferation and inhibit apoptosis in colorectal cancer. Oncol Rep. 2021;46:213.

    Article  CAS  PubMed  Google Scholar 

  75. Avila-Lopez P, Lauberth SM. Exploring new roles for RNA-binding proteins in epigenetic and gene regulation. Curr Opin Genet Dev. 2023;84:102136.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank critical comments and valuable suggestions from Prof. Yin-Ju Lin and Prof. Da-Tian Bau at China Medical University/Taiwan. This study was supported by grants from the National Science and Technology Council (NSTC)/Taiwan (110-2320-B-039-033- and 111-2320-B-039-030-MY3), the NSYSU-KMU Joint Research Project (111-P025), China Medical University/Taiwan (CMU111-MF-65) and China Medical University Hospital/Taiwan (DMR111-239).

Author information

Authors and Affiliations

Authors

Contributions

JJCS, WYL, TYL, and FJT designed the experiments and validated the data. TYL, JC, CMC, and PHC performed GWAS analysis and confirmed the data. CMC, CCT, WYD, CC, and TH collected clinical samples and extracted the DNA. TYL, CYYC, YHL, and FJT conducted clinical study and collected clinical information. JJCS, WYL, CYYC, JC, and FJT analyzed the data and made the figures/tables. JJCS, WYL, CYYC, and FJT confirmed the data and wrote the manuscript.

Corresponding author

Correspondence to Fuu-Jen Tsai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheu, J.JC., Lin, WY., Liu, TY. et al. Ethnic-specific genetic susceptibility loci for endometriosis in Taiwanese-Han population: a genome-wide association study. J Hum Genet (2024). https://doi.org/10.1038/s10038-024-01270-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s10038-024-01270-5

Search

Quick links