Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hexanucleotide repeat expansion in SCA36 reduces the expression of genes involved in ribosome biosynthesis and protein translation

Abstract

Hereditary spinocerebellar ataxia (SCA) is a group of clinically and genetically heterogeneous inherited disorders characterized by slowly progressive cerebellar ataxia. We ascertained a Japanese pedigree with autosomal dominant SCA comprising four family members, including two patients. We identified a GGCCTG repeat expansion of intron 1 in the NOP56 gene by Southern blotting, resulting in a molecular diagnosis of SCA36. RNA sequencing using peripheral blood revealed that the expression of genes involved in ribosomal organization and translation was decreased in patients carrying the GGCCTG repeat expansion. Genes involved in pathways associated with ribosomal organization and translation were enriched and differentially expressed in the patients. We propose a novel hypothesis that the GGCCTG repeat expansion contributes to the pathogenesis of SCA36 by causing a global disruption of translation resulting from ribosomal dysfunction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ashizawa T, Öz G, Paulson HL. Spinocerebellar ataxias: prospects and challenges for therapy development. Nat Rev Neurol. 2018;14:590–605.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Klockgether T, Mariotti C, Paulson HL. Spinocerebellar ataxia. Nat Rev Dis Prim. 2019;5:25.

    Article  Google Scholar 

  3. Wallenius J, Kafantari E, Jhaveri E, Englund E, Ehrencrona H, Puschmann A. Exonic trinucleotide repeat expansions in ZFHX3 cause spinocerebellar ataxia type 4: a poly-glycine disease. Am J Hum Genet. 2024;111:82–95.

    Article  CAS  PubMed  Google Scholar 

  4. Kobayashi H, Abe K, Matsuura T, Ikeda Y, Hitomi T, Akechi Y, et al. Expansion of intronic GGCCTG hexanucleotide repeat in NOP56 causes SCA36, a type of spinocerebellar ataxia accompanied by motor neuron involvement. Am J Hum Genet. 2011;89:121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao S, Zhang D, Liu S, Huang J. The roles of NOP56 in cancer and SCA36. Pathol Oncol Res. 2023;29:1610884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Obayashi M, Stevanin G, Synofzik M, Monin ML, Duyckaerts C, Sato N, et al. Spinocerebellar ataxia type 36 exists in diverse populations and can be caused by a short hexanucleotide GGCCTG repeat expansion. J Neurol Neurosurg Psychiatry. 2015;86:986–95.

    Article  PubMed  Google Scholar 

  7. Valera JM, Diaz T, Petty LE, Quintáns B, Yáñez Z, Boerwinkle E, et al. Prevalence of spinocerebellar ataxia 36 in a US population. Neurol Genet. 2017;3:e174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee YC, Tsai PC, Guo YC, Hsiao CT, Liu GT, Liao YC, et al. Spinocerebellar ataxia type 36 in the Han Chinese. Neurol Genet. 2016;2:e68.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liu W, Ikeda Y, Hishikawa N, Yamashita T, Deguchi K, Abe K. Characteristic RNA foci of the abnormal hexanucleotide GGCCUG repeat expansion in spinocerebellar ataxia type 36 (Asidan). Eur J Neurol. 2014;21:1377–86.

    Article  CAS  PubMed  Google Scholar 

  10. Lopez S, He F. Spinocerebellar ataxia 36: from mutations toward therapies. Front Genet. 2022;13:837690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zeng S, Zeng J, He M, Zeng X, Zhou Y, Liu Z, et al. Genetic and clinical analysis of spinocerebellar ataxia type 36 in Mainland China. Clin Genet. 2016;90:141–8.

    Article  CAS  PubMed  Google Scholar 

  12. García-Murias M, Quintáns B, Arias M, Seixas AI, Cacheiro P, Tarrío R, et al. ‘Costa da Morte’ ataxia is spinocerebellar ataxia 36: clinical and genetic characterization. Brain. 2012;135:1423–35.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    Article  CAS  PubMed  Google Scholar 

  14. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.

    Article  CAS  PubMed  Google Scholar 

  15. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu G, He QY. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol Biosyst. 2016;12:477–9.

    Article  CAS  PubMed  Google Scholar 

  18. Matsuzono K, Imamura K, Murakami N, Tsukita K, Yamamoto T, Izumi Y, et al. Antisense oligonucleotides reduce RNA foci in spinocerebellar ataxia 36 patient iPSCs. Mol Ther Nucleic Acids. 2017;8:211–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gautier T, Bergès T, Tollervey D, Hurt E. Nucleolar KKE/D repeat proteins Nop56p and Nop58p interact with Nop1p and are required for ribosome biogenesis. Mol Cell Biol. 1997;17:7088–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hayano T, Yanagida M, Yamauchi Y, Shinkawa T, Isobe T, Takahashi N. Proteomic analysis of human Nop56p-associated pre-ribosomal ribonucleoprotein complexes. Possible link between Nop56p and the nucleolar protein treacle responsible for Treacher Collins syndrome. J Biol Chem. 2003;278:34309–19.

    Article  CAS  PubMed  Google Scholar 

  21. Quelle-Regaldie A, Folgueira M, Yáñez J, Sobrido-Cameán D, Alba-González A, Barreiro-Iglesias A, et al. A nop56 zebrafish loss-of-function model exhibits a severe neurodegenerative phenotype. Biomedicines. 2022;10:1814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ikeda Y, Ohta Y, Kobayashi H, Okamoto M, Takamatsu K, Ota T, et al. Clinical features of sca36: a novel spinocerebellar ataxia with motor neuron involvement (Asidan). Neurology. 2012;79:333–41.

    Article  CAS  PubMed  Google Scholar 

  23. Sun C, Schuman EM. Logistics of neuronal protein turnover: numbers and mechanisms. Mol Cell Neurosci. 2022;123:103793.

    Article  CAS  PubMed  Google Scholar 

  24. Oksuz O, Henninger JE, Warneford-Thomson R, Zheng MM, Erb H, Vancura A, et al. Transcription factors interact with RNA to regulate genes. Mol Cell. 2023;83:2449–63.e13

    Article  CAS  PubMed  Google Scholar 

  25. Zhang N, Ashizawa T. RNA toxicity and foci formation in microsatellite expansion diseases. Curr Opin Genet Dev. 2017;44:17–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nussbacher JK, Tabet R, Yeo GW, Lagier-Tourenne C. Disruption of RNA metabolism in neurological diseases and emerging therapeutic interventions. Neuron. 2019;102:294–320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Querido E, Gallardo F, Beaudoin M, Ménard C, Chartrand P. Stochastic and reversible aggregation of mRNA with expanded CUG-triplet repeats. J Cell Sci. 2011;124:1703–14.

    Article  CAS  PubMed  Google Scholar 

  28. Furuta N, Tsukagoshi S, Hirayanagi K, Ikeda Y. Suppression of the yeast elongation factor Spt4 ortholog reduces expanded SCA36 GGCCUG repeat aggregation and cytotoxicity. Brain Res. 2019;1711:29–40.

    Article  CAS  PubMed  Google Scholar 

  29. Todd TW, McEachin ZT, Chew J, Burch AR, Jansen-West K, Tong J, et al. Hexanucleotide repeat expansions in c9FTD/ALS and SCA36 confer selective patterns of neurodegeneration in vivo. Cell Rep. 2020;31:107616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all participants who provided their samples in this study. This work was supported in part by the Grants-in-Aid from MEXT; JP26460411, JP23K06853 for S.M. and the MEXT Cooperative Research Project Program, Medical Research Center Initiative for High Depth Omics, and CURE: JPMXP1323015486 for MIB, Kyushu University of the Medical Institute of Bioregulation, Kyushu University. We appreciate the technical assistance and discussion regarding Southern blotting from Yoshikazu Totsuka, Tomoko Saito, Makiko Nakamura, and Naoki Kumagai at the Institute of Immunology Co., Ltd. We also appreciate technical assistance from The Research Support Center, Research Center for Human Disease Modeling, and Kyushu University Graduate School of Medical Science.

Author information

Authors and Affiliations

Authors

Contributions

T.M., S.M., and H.S. designed the experiments. T.M., S.M., S.H., Y.S., R.F., and H.S. prepared the samples and performed the experiments. S.M. and Y.U. collected data on clinical features. R.F., S.M., and H.S. supervised the project. T.M., S.M., and H.S. wrote the manuscript with contributions from all authors. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Hiroki Shibata.

Ethics declarations

Ethics approval and consent to participate

Informed consent was obtained from all the subjects involved in the study. This study was conducted in accordance with the Declaration of Helsinki. The Ethics Committees of Kurume University School of Medicine and Kyushu University Faculty of Medicine issued approvals (#173 and #607-00, respectively).

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morikawa, T., Miura, S., Uchiyama, Y. et al. Hexanucleotide repeat expansion in SCA36 reduces the expression of genes involved in ribosome biosynthesis and protein translation. J Hum Genet (2024). https://doi.org/10.1038/s10038-024-01260-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s10038-024-01260-7

Search

Quick links