Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A novel pathogenic mitochondrial DNA variant m.4344T>C in tRNAGln causes developmental delay

Abstract

Mitochondrial diseases are a group of genetic diseases caused by mutations in mitochondrial DNA and nuclear DNA. However, the genetic spectrum of this disease is not yet complete. In this study, we identified a novel variant m.4344T>C in mitochondrial tRNAGln from a patient with developmental delay. The mutant loads of m.4344T>C were 95% and 89% in the patient’s blood and oral epithelial cells, respectively. Multialignment analysis showed high evolutionary conservation of this nucleotide. TrRosettaRNA predicted that m.4344T>C variant would introduce an additional hydrogen bond and alter the conformation of the T-loop. The transmitochondrial cybrid-based study demonstrated that m.4344T>C variant impaired the steady-state level of mitochondrial tRNAGln and decreased the contents of mitochondrial OXPHOS complexes I, III, and IV, resulting in defective mitochondrial respiration, elevated mitochondrial ROS production, reduced mitochondrial membrane potential and decreased mitochondrial ATP levels. Altogether, this is the first report in patient carrying the m.4344T>C variant. Our data uncover the pathogenesis of the m.4344T>C variant and expand the genetic mutation spectrum of mitochondrial diseases, thus contributing to the clinical diagnosis of mitochondrial tRNAGln gene variants-associated mitochondrial diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang T-g, Miao C-y. Mitochondrial transplantation as a promising therapy for mitochondrial diseases. Acta Pharmaceutica Sin B. 2023;13:1028–35.

    Article  Google Scholar 

  2. Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, McFarland R, et al. Mitochondrial diseases. Nat Rev Dis Prim. 2016;2:1–22.

    Google Scholar 

  3. Craven L, Alston CL, Taylor RW, Turnbull DM. Recent advances in mitochondrial disease. Annu Rev Genomics Hum Genet. 2017;18:257–75.

    Article  CAS  PubMed  Google Scholar 

  4. Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW. The genetics and pathology of mitochondrial disease. J Pathol. 2017;241:236–50.

    Article  CAS  PubMed  Google Scholar 

  5. Schapira AH. Mitochondrial disease. Lancet. 2006;368:70–82.

    Article  CAS  PubMed  Google Scholar 

  6. Fernandez‐Vizarra E, Zeviani M. Mitochondrial disorders of the OXPHOS system. FEBS Lett. 2021;595:1062–106.

    Article  PubMed  Google Scholar 

  7. Suzuki T, Nagao A, Suzuki T. Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu Rev Genet. 2011;45:299–329.

    Article  CAS  PubMed  Google Scholar 

  8. DiMauro S, Davidzon G. Mitochondrial DNA and disease. Ann Med. 2005;37:222–32.

    Article  CAS  PubMed  Google Scholar 

  9. Stenton SL, Prokisch H. Genetics of mitochondrial diseases: Identifying mutations to help diagnosis. EBioMedicine. 2020;56:102784.

  10. Mavraki E, Labrum R, Sergeant K, Alston CL, Woodward C, Smith C, et al. Genetic testing for mitochondrial disease: the United Kingdom best practice guidelines. Eur J Hum Genet. 2023;31:148–63.

    Article  CAS  PubMed  Google Scholar 

  11. Karakaidos P, Rampias T. Mitonuclear interactions in the maintenance of mitochondrial integrity. Life. 2020;10:173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fang H, Hu N, Zhao Q, Wang B, Zhou H, Fu Q, et al. mtDNA haplogroup N9a increases the risk of type 2 diabetes by altering mitochondrial function and intracellular mitochondrial signals. Diabetes. 2018;67:1441–53.

    Article  CAS  PubMed  Google Scholar 

  13. Du M, Wei X, Xu P, Xie A, Zhou X, Yang Y, et al. A novel mitochondrial m. 14430A> G (MT-ND6, p. W82R) variant causes complex I deficiency and mitochondrial Leigh syndrome. Clin Chem Lab Med. 2020;58:11809–17.

    Article  Google Scholar 

  14. Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protocols Bioinformatics. 2003;2.3.1-2.3.22.

  15. Bartoszewicz JM, Seidel A, Renard BY. Interpretable detection of novel human viruses from genome sequencing data. NAR Genomics Bioinforma. 2021;3:lqab004.

    Article  Google Scholar 

  16. Xue L, Wang M, Li H, Wang H, Jiang F, Hou L, et al. Mitochondrial tRNA mutations in 2070 Chinese Han subjects with hypertension. Mitochondrion. 2016;30:208–21.

    Article  CAS  PubMed  Google Scholar 

  17. Wang W, Feng C, Han R, Wang Z, Ye L, Du Z, et al. trRosettaRNA: automated prediction of RNA 3D structure with transformer network. Nat Commun. 2023;14:7266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou X, Lou X, Zhou Y, Xie Y, Han X, Dong Q, et al. Novel biallelic mutations in TMEM126B cause splicing defects and lead to Leigh-like syndrome with severe complex I deficiency. J Hum Genet. 2023;68:239–46.

    Article  CAS  PubMed  Google Scholar 

  19. Fang H, Ye X, Xie J, Li Y, Li H, Bao X, et al. A membrane arm of mitochondrial complex I sufficient to promote respirasome formation. Cell Reports. 2021;35:108963.

  20. Lou X, Zhou Y, Liu Z, Xie Y, Zhang L, Zhao S, et al. De novo frameshift variant in MT-ND1 causes a mitochondrial complex I deficiency associated with MELAS syndrome. Gene. 2023;860:147229.

    Article  CAS  PubMed  Google Scholar 

  21. Fang H, Xie A, Du M, Li X, Yang K, Fu Y, et al. SERAC1 is a component of the mitochondrial serine transporter complex required for the maintenance of mitochondrial DNA. Sci Transl Med. 2022;14:eabl6992.

    Article  CAS  PubMed  Google Scholar 

  22. Hayes P, Fergus C, Ghanim M, Cirzi C, Burtnyak L, McGrenaghan C. Queuine Micronutrient Deficiency Promotes Warburg Metabolism and Reversal of the Mitochondrial ATP Synthase in Hela Cells. Nutrients. 2020;12:2020.

    Article  Google Scholar 

  23. Cheley S, Anderson R. A reproducible microanalytical method for the detection of specific RNA sequences by dot-blot hybridization. Anal Biochem. 1984;137:15–9.

    Article  CAS  PubMed  Google Scholar 

  24. Meng F, Jia Z, Zheng J, Ji Y, Wang J, Xiao Y, et al. A deafness-associated mitochondrial DNA mutation caused pleiotropic effects on DNA replication and tRNA metabolism. Nucleic Acids Res. 2022;50:9453–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bataillard M, Chatzoglou E, Rumbach L, Sternberg D, Tournade A, Laforet P, et al. Atypical MELAS syndrome associated with a new mitochondrial tRNA glutamine point mutation. Neurology. 2001;56:405–7.

    Article  CAS  PubMed  Google Scholar 

  26. Ji K, Wang W, Lin Y, Xu X, Liu F, Wang D, et al. Mitochondrial encephalopathy Due to a Novel Pathogenic Mitochondrial tRNAGln m. 4349C> T Variant. Ann Clin Transl Neurol. 2020;7:980–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dey R, Tengan CH, Morita MP, Kiyomoto BH, Moraes CT. A novel myopathy-associated mitochondrial DNA mutation altering the conserved size of the tRNA(Gln) anticodon loop. Neuromuscul Disord. 2000;10:488–92.

    Article  CAS  PubMed  Google Scholar 

  28. Venkatesan D, Iyer M, Raj N, Gopalakrishnan AV, Narayanasamy A, Kumar NS, et al. Assessment of tRNAThr and tRNAGln Variants and Mitochondrial Functionality in Parkinson’s Disease (PD) Patients of Tamil Nadu Population. J Mol Neurosci. 2023;73:912–20.

    Article  CAS  PubMed  Google Scholar 

  29. Wong L-JC, Chen T, Wang J, Tang S, Schmitt ES, Landsverk M, et al. Interpretation of mitochondrial tRNA variants. Genet Med. 2020;22:917–26.

    Article  CAS  PubMed  Google Scholar 

  30. Zheng J, Bai X, Xiao Y, Ji Y, Meng F, Aishanjiang M, et al. Mitochondrial tRNA mutations in 887 Chinese subjects with hearing loss. Mitochondrion. 2020;52:163–72.

    Article  CAS  PubMed  Google Scholar 

  31. Zhu H-Y, Wang S-W, Liu L, Chen R, Wang L, Gong X-L, et al. Genetic variants in mitochondrial tRNA genes are associated with essential hypertension in a Chinese Han population. Clin Chim acta. 2009;410:64–9.

    Article  CAS  PubMed  Google Scholar 

  32. Qiu Q, Li R, Jiang P, Xue L, Lu Y, Song Y, et al. Mitochondrial tRNA mutations are associated with maternally inherited hypertension in two Han Chinese pedigrees. Hum Mutat. 2012;33:1285–93.

    Article  CAS  PubMed  Google Scholar 

  33. Jiang P, Ling Y, Zhu T, Luo X, Tao Y, Meng F, et al. Mitochondrial tRNA mutations in Chinese children with tic disorders. Biosci Rep. 2020;40:BSR20201856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ruiz‐Pesini E, Wallace DC. Evidence for adaptive selection acting on the tRNA and rRNA genes of human mitochondrial DNA. Hum Mutat. 2006;27:1072–81.

    Article  PubMed  Google Scholar 

  35. Chen H, Sun M, Fan Z, Tong M, Chen G, Li D, et al. Mitochondrial C4375T mutation might be a molecular risk factor in a maternal Chinese hypertensive family under haplotype C. Clin Exp Hypertens. 2018;40:518–23.

    Article  CAS  PubMed  Google Scholar 

  36. Zarrouk-Mahjoub S, Mehri S, Ouarda F, Finsterer J, Boussaada R. Mitochondrial tRNA glutamine variant in hypertrophic cardiomyopathy. Herz. 2015;40:436–41.

    Article  CAS  PubMed  Google Scholar 

  37. Sissler M, González-Serrano LE, Westhof E. Recent advances in mitochondrial aminoacyl-tRNA synthetases and disease. Trends Mol Med. 2017;23:693–708.

    Article  CAS  PubMed  Google Scholar 

  38. Richter U, McFarland R, Taylor RW, Pickett SJ. The molecular pathology of pathogenic mitochondrial tRNA variants. FEBS Lett. 2021;595:1003–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Heidari MM, Khatami M, Kamalipour A, Kalantari M, Movahed M, Emmamy MH, et al. Mitochondrial mutations in protein coding genes of respiratory chain including complexes IV, V, and mt-tRNA genes are associated risk factors for congenital heart disease. EXCLI J. 2022;21:1306.

    PubMed  PubMed Central  Google Scholar 

  40. Tamaki S, Tomita M, Suzuki H, Kanai A. Systematic analysis of the binding surfaces between tRNAs and their respective aminoacyl tRNA synthetase based on structural and evolutionary data. Front Genet. 2018;8:227.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Powell CA, Nicholls TJ, Minczuk M. Nuclear-encoded factors involved in post-transcriptional processing and modification of mitochondrial tRNAs in human disease. Front Genet. 2015;6:79.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely thank the patient and his family who participated in the study. This work was supported by grants from the National Natural Science Foundation of China-excellent young scientists fund (No. 82222043), the Natural Science Foundation of China (No. U22A20342 and 82302636), the “Pioneer” and “Leading Goose” R&D Program of Zhejiang Province (No. 2024C03152), Zhejiang Provincial Natural Science Foundation (No. LQ23H200001), Scientific Research Fund of Zhejiang Provincial Education Department (No. Y202249698), Shanghai Municipal Commission of Health and Family Planning (No. 20204Y0451), Shanghai Scientific and Technological Innovation Action Plan (No.21YF1437800), Shanghai Natural Science Foundation of China (No.21ZR1452700) and the Science and Technology Bureau of Wenzhou (No.Y2023089).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianxin Lyu, Yongguo Yu or Ya Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Dong, Q., Fan, S. et al. A novel pathogenic mitochondrial DNA variant m.4344T>C in tRNAGln causes developmental delay. J Hum Genet 69, 381–389 (2024). https://doi.org/10.1038/s10038-024-01254-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-024-01254-5

Search

Quick links