Skip to main content
Log in

Substitutional doping in 2D transition metal dichalcogenides

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) van der Waals transition metal dichalcogenides (TMDs) are a new class of electronic materials offering tremendous opportunities for advanced technologies and fundamental studies. Similar to conventional semiconductors, substitutional doping is key to tailoring their electronic properties and enabling their device applications. Here, we review recent progress in doping methods and understanding of doping effects in group 6 TMDs (MX2, M = Mo, W; X = S, Se, Te), which are the most widely studied model 2D semiconductor system. Experimental and theoretical studies have shown that a number of different elements can substitute either M or X atoms in these materials and act as n- or p-type dopants. This review will survey the impact of substitutional doping on the electrical and optical properties of these materials, discuss open questions, and provide an outlook for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avouris, P.; Heinz, T. F.; Low, T. 2D Materials; Cambridge University Press: Cambridge, 2017.

    Google Scholar 

  2. Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

  3. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.

    CAS  Google Scholar 

  4. Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    CAS  Google Scholar 

  5. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Google Scholar 

  6. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    CAS  Google Scholar 

  7. Schmidt, H.; Giustiniano, F.; Eda, G. Electronic transport properties of transition metal dichalcogenide field-effect devices: Surface and interface effects. Chem. Soc. Rev. 2015, 44, 7715–7736.

    CAS  Google Scholar 

  8. Yoon, Y.; Ganapathi, K.; Salahuddin, S. How good can monolayer MoS2 transistors Be? Nano Lett. 2011, 11, 3768–3773.

    CAS  Google Scholar 

  9. Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.

    CAS  Google Scholar 

  10. Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q. X.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C. M. et al. MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354, 99–102.

    CAS  Google Scholar 

  11. Vu, Q. A.; Shin, Y. S.; Kim, Y. R.; Nguyen, V. L.; Kang, W. T.; Kim, H.; Luong, D. H.; Lee, I. M.; Lee, K.; Ko, D. S. et al. Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio. Nat. Commun. 2016, 7, 12725.

    CAS  Google Scholar 

  12. Radisavljevic, B.; Whitwick, M. B.; Kis, A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 2011, 5, 9934–9938.

    CAS  Google Scholar 

  13. Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

    CAS  Google Scholar 

  14. Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.

    CAS  Google Scholar 

  15. Konstantatos, G. Current status and technological prospect of photodetectors based on two-dimensional materials. Nat. Commun. 2018, 9, 5266.

    CAS  Google Scholar 

  16. Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 2014, 9, 268–272.

    CAS  Google Scholar 

  17. Sundaram, R. S.; Engel, M.; Lombardo, A.; Krupke, R.; Ferrari, A. C.; Avouris, P.; Steiner, M. Electroluminescence in single layer MoS2. Nano Lett. 2013, 13, 1416–1421.

    CAS  Google Scholar 

  18. Wang, J. Y.; Verzhbitskiy, I.; Eda, G. Electroluminescent devices based on 2D semiconducting transition metal dichalcogenides. Adv. Mater. 2018, 30, 1802687.

    Google Scholar 

  19. Datta, I.; Chae, S. H.; Bhatt, G. R.; Tadayon, M. A.; Li, B. C.; Yu, Y. L.; Park, C.; Park, J.; Cao, L. Y.; Basov, D. N. et al. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nat. Photonics 2020, 14, 256–262.

    CAS  Google Scholar 

  20. Lee, H. S.; Min, S. W.; Chang, Y. G.; Park, M. K.; Nam, T.; Kim, H.; Kim, J. H.; Ryu, S.; Im, S. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 2012, 12, 3695–3700.

    CAS  Google Scholar 

  21. Sun, Z. P.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nat. Photonics 2016, 10, 227–238.

    CAS  Google Scholar 

  22. Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359.

    CAS  Google Scholar 

  23. Gao, J.; Kim, Y. D.; Liang, L. B.; Idrobo, J. C.; Chow, P.; Tan, J. W.; Li, B. C.; Li, L.; Sumpter, B. G.; Lu, T. M. et al. Transition-metal substitution doping in synthetic atomically thin semiconductors. Adv. Mater. 2016, 28, 9735–9743.

    CAS  Google Scholar 

  24. Zhang, T. Y.; Fujisawa, K.; Zhang, F.; Liu, M. Z.; Lucking, M. C.; Gontijo, R. N.; Lei, Y.; Liu, H.; Crust, K.; Granzier-Nakajima, T. et al. Universal in situ substitutional doping of transition metal dichal-cogenides by liquid-phase precursor-assisted synthesis. ACS Nano 2020, 14, 4326–4335.

    CAS  Google Scholar 

  25. Tongay, S.; Zhou, J.; Ataca, C.; Liu, J.; Kang, J. S.; Matthews, T. S.; You, L.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 2013, 13, 2831–2836.

    CAS  Google Scholar 

  26. Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948.

    CAS  Google Scholar 

  27. Kiriya, D.; Tosun, M.; Zhao, P. D.; Kang, J. S.; Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 2014, 136, 7853–7856.

    CAS  Google Scholar 

  28. Jung, Y.; Zhou, Y.; Cha, J. J. Intercalation in two-dimensional transition metal chalcogenides. Inorg. Chem. Front. 2016, 3, 452–463.

    CAS  Google Scholar 

  29. Chanana, A.; Mahapatra, S. Theoretical insights to niobium-doped monolayer MoS2-gold contact. IEEE Trans. Electron Dev. 2015, 62, 2346–2351.

    CAS  Google Scholar 

  30. Lin, X. Q.; Ni, J. Charge and magnetic states of Mn-, Fe-, and Co-doped monolayer MoS2. J. Appl. Phys. 2014, 116, 044311.

    Google Scholar 

  31. Luo, M.; Shen, Y. H.; Chu, J. H. First-principles study of the magnetism of Ni-doped MoS2 monolayer. Jpn. J. Appl. Phys. 2016, 55, 093001.

    Google Scholar 

  32. Dolui, K.; Rungger, I.; Pemmaraju, C. D.; Sanvito, S. Possible doping strategies for MoS2 monolayers: An ab initio study. Phys. Rev. B 2013, 88, 075420.

    Google Scholar 

  33. Zhao, X.; Chen, P.; Xia, C. X.; Wang, T. X.; Dai, X. Q. Electronic and magnetic properties of n-type and p-doped MoS2 monolayers. RSC Adv. 2016, 6, 16772–16778.

    CAS  Google Scholar 

  34. Fan, X. L.; An, Y. R.; Guo, W. J. Ferromagnetism in transitional metal-doped MoS2 monolayer. Nanoscale Res. Lett. 2016, 11, 154.

    Google Scholar 

  35. Williamson, I.; Li, S. S.; Correa Hernandez, A.; Lawson, M.; Chen, Y.; Li, L. Structural, electrical, phonon, and optical properties of Ti- and V-doped two-dimensional MoS2. Chem. Phys. Lett. 2017, 674, 157–163.

    CAS  Google Scholar 

  36. Zhao, X.; Xia, C. X.; Wang, T. X.; Dai, X. Q. Electronic and magnetic properties of X-doped (X = Ti, Zr, Hf) tungsten disulphide monolayer. J. Alloys Compd. 2016, 654, 574–579.

    CAS  Google Scholar 

  37. Carvalho, A.; Neto, A. H. C. Donor and acceptor levels in semiconducting transition-metal dichalcogenides. Phys. Rev. B 2014, 89, 081406.

    Google Scholar 

  38. Duan, H. L.; Guo, P.; Wang, C.; Tan, H.; Hu, W.; Yan, W. S.; Ma, C.; Cai, L.; Song, L.; Zhang, W. H. et al. Beating the exclusion rule against the coexistence of robust luminescence and ferromagnetism in chalcogenide monolayers. Nat. Commun. 2019, 10, 1584.

    Google Scholar 

  39. Xu, E. Z.; Liu, H. M.; Park, K.; Li, Z.; Losovyj, Y.; Starr, M.; Werbianskyj, M.; Fertig, H. A.; Zhang, S. X. P-type transition-metal doping of large-area MoS2 thin films grown by chemical vapor deposition. Nanoscale 2017, 9, 3576–3584.

    CAS  Google Scholar 

  40. Lin, Y. C.; Dumcenco, D. O.; Komsa, H. P.; Niimi, Y.; Krasheninnikov, A. V.; Huang, Y. S.; Suenaga, K. Properties of individual dopant atoms in single-layer MoS2: Atomic structure, migration, and enhanced reactivity. Adv. Mater. 2014, 26, 2857–2861.

    CAS  Google Scholar 

  41. Wang, S. Y.; Ko, T. S.; Huang, C. C.; Lin, D. Y.; Huang, Y. S. Optical and electrical properties of MoS2 and Fe-doped MoS2. Jpn. J. Appl. Phys. 2014, 53, 04EH07.

    Google Scholar 

  42. Zhong, M. Z.; Shen, C.; Huang, L.; Deng, H. X.; Shen, G. Z.; Zheng, H. Z.; Wei, Z. M.; Li, J. B. Electronic structure and exciton shifts in Sb-doped MoS2 monolayer. npj 2D Mater. Appl. 2019, 3, 1.

    CAS  Google Scholar 

  43. Xiang, Z. C.; Zhang, Z.; Xu, X. J.; Zhang, Q.; Wang, Q. B.; Yuan, C. W. Room-temperature ferromagnetism in Co doped MoS2 sheets. Phys. Chem. Chem. Phys. 2015, 17, 15822–15828.

    CAS  Google Scholar 

  44. Fu, S. C.; Kang, K.; Shayan, K.; Yoshimura, A.; Dadras, S.; Wang, X. T.; Zhang, L. H.; Chen, S. W.; Liu, N.; Jindal, A. et al. Enabling room temperature ferromagnetism in monolayer MoS2 via in situ iron-doping. Nat. Commun. 2020, 11, 2034.

    CAS  Google Scholar 

  45. Habib, M.; Muhammad, Z.; Khan, R.; Wu, C. Q.; ur Rehman, Z.; Zhou, Y.; Liu, H. J.; Song, L. Ferromagnetism in CVT grown tungsten diselenide single crystals with nickel doping. Nanotechnology 2018, 29, 115701.

    Google Scholar 

  46. Wilson, J.; Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193–335.

    CAS  Google Scholar 

  47. Brixner, L. H. Preparation and properties of the single crystalline AB2-type selenides and tellurides of niobium, tantalum, molybdenum and tungsten. J. Inorg. Nucl. Chem. 1962, 24, 257–263.

    CAS  Google Scholar 

  48. Hicks, W. Semiconducting behavior of substituted tungsten diselenide and its analogues. J. Electrochem. Soc. 1964, 111, 1058–1065.

    CAS  Google Scholar 

  49. Luo, P.; Zhuge, F. W.; Zhang, Q. F.; Chen, Y. Q.; Lv, L.; Huang, Y.; Li, H. Q.; Zhai, T. Y. Doping engineering and functionalization of two-dimensional metal chalcogenides. Nanoscale Horiz. 2019, 4, 26–51.

    CAS  Google Scholar 

  50. Zhang, K. H.; Robinson, J. Doping of two-dimensional semiconductors: A rapid review and outlook. MRS Adv. 2019, 4, 2743–2757.

    CAS  Google Scholar 

  51. Yoon, A.; Lee, Z. Synthesis and properties of two dimensional doped transition metal dichalcogenides. Appl. Microsc. 2017, 47, 19–28.

    Google Scholar 

  52. Cheiwchanchamnangij, T.; Lambrecht, W. R. L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B 2012, 85, 205302.

    Google Scholar 

  53. Molina-Sánchez, A.; Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 2011, 84, 155413.

    Google Scholar 

  54. Reshak, A. H.; Auluck, S. Calculated optical properties of 2H-MoS2 intercalated with lithium. Phys. Rev. B 2003, 68, 125101.

    Google Scholar 

  55. Chen, X. L.; Wu, Z. F.; Xu, S. G.; Wang, L.; Huang, R.; Han, Y.; Ye, W. G.; Xiong, W.; Han, T. Y.; Long, G. et al. Probing the electron states and metal-insulator transition mechanisms in molybdenum disulphide vertical heterostructures. Nat. Commun. 2015, 6, 6088.

    Google Scholar 

  56. Komsa, H. P.; Krasheninnikov, A. V. Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles. Phys. Rev. B 2012, 86, 241201.

    Google Scholar 

  57. Chernikov, A.; Berkelbach, T. C.; Hill, H. M.; Rigosi, A.; Li, Y. L.; Aslan, O. B.; Reichman, D. R.; Hybertsen, M. S.; Heinz, T. F. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 2014, 113, 076802.

    CAS  Google Scholar 

  58. Ugeda, M. M.; Bradley, A. J.; Shi, S. F.; da Jornada, F. H.; Zhang, Y.; Qiu, D. Y.; Ruan, W.; Mo, S. K.; Hussain, Z.; Shen, Z. X. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 2014, 13, 1091–1095.

    CAS  Google Scholar 

  59. Li, J. B.; Wei, S. H.; Wang, L. W. Stability of the DX center in GaAs quantum dots. Phys. Rev. Lett. 2005, 94, 185501.

    Google Scholar 

  60. Yang, J. H.; Yakobson, B. I. Dimensionality-suppressed chemical doping in 2D semiconductors: The cases of phosphorene, MoS2, and ReS2 from first-principles. 2017, arXiv:1711.05094. arXiv.org e-Print archive. https://arxiv.org/abs/1711.05094 (accessed Nov 14, 2017).

  61. Götz, W.; Johnson, N. M.; Chen, C.; Liu, H.; Kuo, C.; Imler, W. Activation energies of Si donors in GaN. Appl. Phys. Lett. 1996, 68, 3144–3146.

    Google Scholar 

  62. Rockett, A.; Johnson, D. D.; Khare, S. V.; Tuttle, B. R. Prediction of dopant ionization energies in silicon: The importance of strain. Phys. Rev. B 2003, 68, 233208.

    Google Scholar 

  63. Lu, S.; Li, C.; Zhao, Y. F.; Gong, Y. Y.; Niu, L. Y.; Liu, X. J. Tunable redox potential of nonmetal doped monolayer MoS2: First principle calculations. Appl. Surf. Sci. 2016, 384, 360–367.

    CAS  Google Scholar 

  64. Hu, A. M.; Wang, L. L.; Meng, B.; Xiao, W. Z. Ab initio study of magnetism in nonmagnetic metal substituted monolayer MoS2. Solid State Commun. 2015, 220, 67–71.

    CAS  Google Scholar 

  65. Noh, J. Y.; Kim, H.; Park, M.; Kim, Y. S. Deep-to-shallow level transition of Re and Nb dopants in monolayer MoS2 with dielectric environments. Phys. Rev. B 2015, 92, 115431.

    Google Scholar 

  66. Zhang, K. H.; Bersch, B. M.; Joshi, J.; Addou, R.; Cormier, C. R.; Zhang, C. X.; Xu, K.; Briggs, N. C.; Wang, K.; Subramanian, S. et al. Tuning the electronic and photonic properties of monolayer MoS2 via in situ rhenium substitutional doping. Adv. Funct. Mater. 2018, 28, 1706950.

    Google Scholar 

  67. Gao, H.; Suh, J.; Cao, M. C.; Joe, A. Y.; Mujid, F.; Lee, K. H.; Xie, S. E.; Poddar, P.; Lee, J. U.; Kang, K. et al. Tuning electrical conductance of MoS2 monolayers through substitutional doping. Nano Lett. 2020, 20, 4095–4101.

    CAS  Google Scholar 

  68. Kochat, V.; Apte, A.; Hachtel, J. A.; Kumazoe, H.; Krishnamoorthy, A.; Susarla, S.; Idrobo, J. C.; Shimojo, F.; Vashishta, P.; Kalia, R. et al. Re doping in 2D transition metal dichalcogenides as a new route to tailor structural phases and induced magnetism. Adv. Mater. 2017, 29, 1703754.

    Google Scholar 

  69. Zhang, K. H.; Feng, S. M.; Wang, J. J.; Azcatl, A.; Lu, N.; Addou, R.; Wang, N.; Zhou, C. J.; Lerach, J.; Bojan, V. et al. Manganese doping of monolayer MoS2: The substrate is critical. Nano Lett. 2015, 15, 6586–6591.

    CAS  Google Scholar 

  70. Cai, Z. Y.; Shen, T. Z.; Zhu, Q.; Feng, S. M.; Yu, Q. M.; Liu, J. M.; Tang, L.; Zhao, Y.; Wang, J. W.; Liu, B. L. et al. Dual-additive assisted chemical vapor deposition for the growth of Mn-doped 2D MoS2 with tunable electronic properties. Small 2020, 16, 1903181.

    CAS  Google Scholar 

  71. Huang, C.; Jin, Y. B.; Wang, W. Y.; Tang, L.; Song, C. Y.; Xiu, F. X. Manganese and chromium doping in atomically thin MoS2. J. Semicond. 2017, 38, 033004.

    Google Scholar 

  72. Cheng, Y. C.; Zhu, Z. Y.; Mi, W. B.; Guo, Z. B.; Schwingenschlögl, U. Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems. Phys. Rev. B 2013, 87, 100401.

    Google Scholar 

  73. Li, Q.; Zhao, X. X.; Deng, L. J.; Shi, Z. T.; Liu, S.; Wei, Q. L.; Zhang, L. B.; Cheng, Y. C.; Zhang, L.; Lu, H. P. et al. Enhanced valley Zeeman splitting in Fe-doped monolayer MoS2. ACS Nano 2020, 14, 4636–4645.

    CAS  Google Scholar 

  74. Lu, S. C.; Leburton, J. P. Electronic structures of defects and magnetic impurities in MoS2 monolayers. Nanoscale Res. Lett. 2014, 9, 676.

    Google Scholar 

  75. Liu, M. M.; Wei, S. C.; Shahi, S.; Jaiswal, H. N.; Paletti, P.; Fathipour, S.; Remskar, M.; Jiao, J.; Hwang, W.; Yao, F. et al. Enhanced carrier transport by transition metal doping in WS2 field effect transistors. Nanoscale, in press, DOI: https://doi.org/10.1039/D0NR01573C.

  76. Li, B.; Huang, L.; Zhong, M. Z.; Huo, N. J.; Li, Y. T.; Yang, S. X.; Fan, C.; Yang, J. H.; Hu, W. P.; Wei, Z. M. et al. Synthesis and transport properties of large-scale alloy Co0.16Mo0.84S2 bilayer nanosheets. ACS Nano 2015, 9, 1257–1262.

    CAS  Google Scholar 

  77. Hu, A. M.; Wang, L. L.; Xiao, W. Z.; Meng, B. Electronic structures and magnetic properties in Cu-doped two-dimensional dichalcogenides. Phys. E: Low-Dimens. Syst. Nanostruct. 2015, 73, 69–75.

    CAS  Google Scholar 

  78. Yun, W. S.; Lee, J. Unexpected strong magnetism of Cu doped single-layer MoS2 and its origin. Phys. Chem. Chem. Phys. 2014, 16, 8990–8996.

    CAS  Google Scholar 

  79. Li, M. G.; Yao, J. D.; Wu, X. X.; Zhang, S. C.; Xing, B. R.; Niu, X. Y.; Yan, X. Y.; Yu, Y.; Liu, Y. L.; Wang, Y. W. P-type doping in large-area monolayer MoS2 by chemical vapor deposition. ACS Appl. Mater. Interfaces 2020, 12, 6276–6282.

    CAS  Google Scholar 

  80. Jin, Y. Y.; Zeng, Z. Y.; Xu, Z. W.; Lin, Y. C.; Bi, K. X.; Shao, G. L.; Hu, T. S.; Wang, S. S.; Li, S. S.; Suenaga, K. et al. Synthesis and transport properties of degenerate p-type Nb-doped WS2 monolayers. Chem. Mater. 2019, 31, 3534–3541.

    CAS  Google Scholar 

  81. Sasaki, S.; Kobayashi, Y.; Liu, Z.; Suenaga, K.; Maniwa, Y.; Miyauchi, Y.; Miyata, Y. Growth and optical properties of Nb-doped WS2 monolayers. Appl. Phys. Express 2016, 9, 071201.

    Google Scholar 

  82. Suh, J.; Park, T. E.; Lin, D. Y.; Fu, D. Y.; Park, J.; Jung, H. J.; Chen, Y. B.; Ko, C.; Jang, C.; Sun, Y. H. et al. Doping against the native propensity of MoS2: Degenerate hole doping by cation substitution. Nano Lett. 2014, 14, 6976–6982.

    CAS  Google Scholar 

  83. Qin, Z. Y.; Loh, L.; Wang, J. Y.; Xu, X. M.; Zhang, Q.; Haas, B.; Alvarez, C.; Okuno, H.; Yong, J. Z.; Schultz, T. et al. Growth of Nb-doped monolayer WS2 by liquid-phase precursor mixing. ACS Nano 2019, 13, 10768–10775.

    CAS  Google Scholar 

  84. Li, S. S.; Lin, Y. C.; Zhao, W.; Wu, J.; Wang, Z.; Hu, Z. H.; Shen, Y. D.; Tang, D. M.; Wang, J. Y.; Zhang, Q. et al. Vapour-liquid-solid growth of monolayer MoS2 nanoribbons. Nat. Mater. 2018, 17, 535–542.

    CAS  Google Scholar 

  85. Zhang, F.; Zheng, B. Y.; Sebastian, A.; Olson, H.; Liu, M. Z.; Fujisawa, K.; Pham, Y. T. H.; Jimenez, V. O.; Kalappattil, V.; Miao, L. X. et al. Monolayer vanadium-doped tungsten disulfide: A room-temperature dilute magnetic semiconductor. 2020, arXiv:2005.01965.arXiv.org e-Print archive. https://arxiv.org/abs/2005.01965 (accessed May 5, 2020).

  86. Yun, S. J.; Duong, D. L.; Ha, D. M.; Singh, K.; Phan, T. L.; Choi, W.; Kim, Y. M.; Lee, Y. H. Ferromagnetic order at room temperature in monolayer WSe2 semiconductor via vanadium dopant. Adv. Sci. 2020, 7, 1903076.

    CAS  Google Scholar 

  87. Mallet, P.; Chiapello, F.; Okuno, H.; Boukari, H.; Jamet, M.; Veuillen, J. Y. Bound hole states associated to individual vanadium atoms incorporated into monolayer WSe2. Phys. Rev. Lett. 2020, 125, 036802.

    CAS  Google Scholar 

  88. Shu, C. K.; Lee, W. H.; Pan, Y. C.; Chen, C. C.; Lin, H. C.; Ou, J.; Chen, W. H.; Chen, W. K.; Lee, M. C. Optical and electrical investigations of isoelectronic In-doped GaN films. Solid State Commun. 2000, 114, 291–293.

    CAS  Google Scholar 

  89. Lee, M. K.; Chiu, T. H.; Dayem, A.; Agyekum, E. Isoelectronic doping in GaAs epilayers grown by molecular beam epitaxy. Appl. Phys. Lett. 1988, 53, 2653–2655.

    CAS  Google Scholar 

  90. Walukiewicz, W. Dislocation density reduction by isoelectronic impurities in semiconductors. Appl. Phys. Lett. 1989, 54, 2009–2011.

    CAS  Google Scholar 

  91. Ma, Y. Y.; Tang, B. B.; Lian, W. T.; Wu, C. Y.; Wang, X. M.; Ju, H. X.; Zhu, C. F.; Fan, F. J.; Chen, T. Efficient defect passivation of Sb2Se3 film by tellurium doping for high performance solar cells. J. Mater. Chem. A 2020, 8, 6510–6516.

    CAS  Google Scholar 

  92. Bhattacharya, P. K.; Dhar, S.; Berger, P.; Juang, F. Y. Low defect densities in molecular beam epitaxial GaAs achieved by isoelectronic In doping. Appl. Phys. Lett. 1986, 49, 470–472.

    CAS  Google Scholar 

  93. Li, X. F.; Puretzky, A. A.; Sang, X. H.; KC, S.; Tian, M. K.; Ceballos, F.; Mahjouri-Samani, M.; Wang, K.; Unocic, R. R.; Zhao, H. et al. Suppression of defects and deep levels using isoelectronic tungsten substitution in monolayer MoSe2. Adv. Funct. Mater. 2017, 27, 1603850.

    Google Scholar 

  94. Huang, B.; Yoon, M.; Sumpter, B. G.; Wei, S. H.; Liu, F. Alloy engineering of defect properties in semiconductors: Suppression of deep levels in transition-metal dichalcogenides. Phys. Rev. Lett. 2015, 115, 126806.

    Google Scholar 

  95. Li, X. F.; Lin, M. W.; Basile, L.; Hus, S. M.; Puretzky, A. A.; Lee, J.; Kuo, Y. C.; Chang, L. Y.; Wang, K.; Idrobo, J. C. et al. Isoelectronic tungsten doping in monolayer MoSe2 for carrier type modulation. Adv. Mater. 2016, 28, 8240–8247.

    CAS  Google Scholar 

  96. Cai, H.; Chen, B.; Blei, M.; Chang, S. L. Y.; Wu, K. D.; Zhuang, H. L.; Tongay, S. Abnormal band bowing effects in phase instability crossover region of GaSe1−xTex nanomaterials. Nat. Commun. 2018, 9, 1927.

    Google Scholar 

  97. Ma, J.; Wei, S. H. Bowing of the defect formation energy in semiconductor alloys. Phys. Rev. B 2013, 87, 241201.

    Google Scholar 

  98. Wei, S. H.; Zhang, S. B.; Zunger, A. First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys. J. Appl. Phys. 2000, 87, 1304–1311.

    CAS  Google Scholar 

  99. Song, J. G.; Ryu, G. H.; Lee, S. J.; Sim, S.; Lee, C. W.; Choi, T.; Jung, H.; Kim, Y.; Lee, Z.; Myoung, J. M. et al. Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer. Nat. Commun. 2015, 6, 7817.

    Google Scholar 

  100. Azizi, A.; Wang, Y.; Stone, G.; Elias, A. L.; Lin, Z.; Terrones, M.; Crespi, V. H.; Alem, N. Defect coupling and sub-angstrom structural distortions in W1−xMoxS2 monolayers. Nano Lett. 2017, 17, 2802–2808.

    CAS  Google Scholar 

  101. Karthikeyan, J.; Komsa, H. P.; Batzill, M.; Krasheninnikov, A. V. Which transition metal atoms can be embedded into two-dimensional molybdenum dichalcogenides and add magnetism? Nano Lett. 2019, 19, 4581–4587.

    CAS  Google Scholar 

  102. Lewis, D. J.; Tedstone, A. A.; Zhong, X. L.; Lewis, E. A.; Rooney, A.; Savjani, N.; Brent, J. R.; Haigh, S. J.; Burke, M. G.; Muryn, C. A. et al. Thin films of molybdenum disulfide doped with chromium by aerosol-assisted chemical vapor deposition (AACVD). Chem. Mater. 2015, 27, 1367–1374.

    CAS  Google Scholar 

  103. Jellinek, F. The structures of the chromium sulphides. Acta Cryst. 1957, 10, 620–628.

    CAS  Google Scholar 

  104. Tedstone, A. A.; Lewis, D. J.; O’Brien, P. Synthesis, properties, and applications of transition metal-doped layered transition metal dichalcogenides. Chem. Mater. 2016, 28, 1965–1974.

    CAS  Google Scholar 

  105. Liu, X. M.; Zhao, X.; Ma, X.; Wu, N. H.; Xin, Q. Q.; Wang, T. X. Effect of strain on electronic and magnetic properties of n-type Cr-doped WSe2 monolayer. Phys. E: Low-Dimens. Syst. Nanostruct. 2017, 87, 6–9.

    CAS  Google Scholar 

  106. Azcatl, A.; Qin, X. Y.; Prakash, A.; Zhang, C. X.; Cheng, L. X.; Wang, Q. X.; Lu, N.; Kim, M. J.; Kim, J.; Cho, K. et al. Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure. Nano Lett. 2016, 16, 5437–5443.

    CAS  Google Scholar 

  107. Nipane, A.; Karmakar, D.; Kaushik, N.; Karande, S.; Lodha, S. Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation. ACS Nano 2016, 10, 2128–2137.

    CAS  Google Scholar 

  108. Yang, L. M.; Majumdar, K.; Liu, H.; Du, Y. C.; Wu, H.; Hatzistergos, M.; Hung, P. Y.; Tieckelmann, R.; Tsai, W.; Hobbs, C. et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 2014, 14, 6275–6280.

    CAS  Google Scholar 

  109. Li, S. Y.; Chen, X. Q.; Liu, F. M.; Chen, Y. F.; Liu, B. Y.; Deng, W. J.; An, B. X.; Chu, F. H.; Zhang, G. Q.; Li, S. L. et al. Enhanced performance of a CVD MoS2 photodetector by chemical in situ n-type doping. ACS Appl. Mater. Interfaces 2019, 11, 11636–11644.

    CAS  Google Scholar 

  110. Gong, Y. J.; Liu, Z.; Lupini, A. R.; Shi, G.; Lin, J. H.; Najmaei, S.; Lin, Z.; Elias, A. L.; Berkdemir, A.; You, G. et al. Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano Lett. 2014, 14, 442–449.

    CAS  Google Scholar 

  111. Zheng, B. Y.; Ma, C.; Li, D.; Lan, J. Y.; Zhang, Z.; Sun, X. X.; Zheng, W. H.; Yang, T. F.; Zhu, C. G.; Ouyang, G. et al. Band alignment engineering in two-dimensional lateral heterostructures. J. Am. Chem. Soc. 2018, 140, 11193–11197.

    CAS  Google Scholar 

  112. Li, P. L.; Cui, J.; Zhou, J. D.; Guo, D.; Zhao, Z. Z.; Yi, J.; Fan, J.; Ji, Z. Q.; Jing, X. N.; Qu, F. M. et al. Phase transition and superconductivity enhancement in Se-substituted MoTe2 thin films. Adv. Mater. 2019, 31, 1904641.

    CAS  Google Scholar 

  113. Pető, J.; Ollár, T.; Vancsó, P.; Popov, Z. I.; Magda, G. Z.; Dobrik, G.; Hwang, C.; Sorokin, P. B.; Tapasztó, L. Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions. Nat. Chem. 2018, 10, 1246–1251.

    Google Scholar 

  114. Cao, Q.; Dai, Y. W.; Xu, J.; Chen, L.; Zhu, H.; Sun, Q. Q.; Zhang, D. W. Realizing stable p-type transporting in two-dimensional WS2 films. ACS Appl. Mater. Interfaces 2017, 9, 18215–18221.

    CAS  Google Scholar 

  115. Yang, Q.; Wang, Z. G.; Dong, L. C.; Zhao, W. B.; Jin, Y.; Fang, L.; Hu, B. S.; Dong, M. D. Activating MoS2 with super-high nitrogen-doping concentration as efficient catalyst for hydrogen evolution reaction. J. Phys. Chem. C 2019, 123, 10917–10925.

    CAS  Google Scholar 

  116. Conroy, L. E.; Park, K. C. Electrical properties of the group IV disulfides, titanium disulfide, zirconium disulfide, hafnium disulfide and tin disulfide. Inorg. Chem. 1968, 7, 459–463.

    CAS  Google Scholar 

  117. Jin, Z. P.; Cai, Z.; Chen, X. S.; Wei, D. C. Abnormal n-type doping effect in nitrogen-doped tungsten diselenide prepared by moderate ammonia plasma treatment. Nano Res. 2018, 11, 4923–4930.

    CAS  Google Scholar 

  118. Qin, S.; Lei, W. W.; Liu, D.; Chen, Y. In-situ and tunable nitrogen-doping of MoS2 nanosheets. Sci. Rep. 2014, 4, 7582.

    CAS  Google Scholar 

  119. Khosravi, A.; Addou, R.; Smyth, C. M.; Yue, R. Y.; Cormier, C. R.; Kim, J.; Hinkle, C. L.; Wallace, R. M. Covalent nitrogen doping in molecular beam epitaxy-grown and bulk WSe2. APL Mater. 2018, 6, 026603.

    Google Scholar 

  120. Li, H. L.; Duan, X. D.; Wu, X. P.; Zhuang, X. J.; Zhou, H.; Zhang, Q. L.; Zhu, X. L.; Hu, W.; Ren, P. Y.; Guo, P. F. et al. Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc. 2014, 136, 3756–3759.

    CAS  Google Scholar 

  121. Duan, X. D.; Wang, C.; Fan, Z.; Hao, G. L.; Kou, L. Z.; Halim, U.; Li, H. L.; Wu, X. P.; Wang, Y. C.; Jiang, J. H. et al. Synthesis of WS2xSe2−2x alloy nanosheets with composition-tunable electronic properties. Nano Lett. 2016, 16, 264–269.

    CAS  Google Scholar 

  122. Verzhbitskiy, I. A.; Voiry, D.; Chhowalla, M.; Eda, G. Disorder-driven two-dimensional quantum phase transitions in LixMoS2. 2D Mater. 2020, 7, 035013.

    CAS  Google Scholar 

  123. Barja, S.; Refaely-Abramson, S.; Schuler, B.; Qiu, D. Y.; Pulkin, A.; Wickenburg, S.; Ryu, H.; Ugeda, M. M.; Kastl, C.; Chen, C. et al. Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides. Nat. Commun. 2019, 10, 3382.

    Google Scholar 

  124. Su, W. T.; Jin, L.; Qu, X. D.; Huo, D. X.; Yang, L. Defect passivation induced strong photoluminescence enhancement of rhombic monolayer MoS2. Phys. Chem. Chem. Phys. 2016, 18, 14001–14006.

    CAS  Google Scholar 

  125. Shu, H. B.; Li, Y. H.; Niu, X. H.; Wang, J. L. Greatly enhanced optical absorption of a defective MoS2 monolayer through oxygen passivation. ACS Appl. Mater. Interfaces 2016, 8, 13150–13156.

    CAS  Google Scholar 

  126. Komsa, H. P.; Kotakoski, J.; Kurasch, S.; Lehtinen, O.; Kaiser, U.; Krasheninnikov, A. V. Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping. Phys. Rev. Lett. 2012, 109, 035503.

    Google Scholar 

  127. Kc, S.; Longo, R. C.; Wallace, R. M.; Cho, K. Surface oxidation energetics and kinetics on MoS2 monolayer. J. Appl. Phys. 2015, 117, 135301.

    Google Scholar 

  128. Bollinger, M. V.; Lauritsen, J. V.; Jacobsen, K. W.; Nerskov, J. K.; Helveg, S.; Besenbacher, F. One-dimensional metallic edge states in MoS2. Phys. Rev. Lett. 2001, 87, 196803.

    CAS  Google Scholar 

  129. Hu, Z. L.; Avila, J.; Wang, X. Y.; Leong, J. F.; Zhang, Q.; Liu, Y. P.; Asensio, M. C.; Lu, J. P.; Carvalho, A.; Sow, C. H. et al. The role of oxygen atoms on excitons at the edges of monolayer WS2. Nano Lett. 2019, 19, 4641–4650.

    CAS  Google Scholar 

  130. Islam, M. R.; Kang, N.; Bhanu, U.; Paudel, H. P.; Erementchouk, M.; Tetard, L.; Leuenberger, M. N.; Khondaker, S. I. Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma. Nanoscale 2014, 6, 10033–10039.

    CAS  Google Scholar 

  131. Kang, N.; Paudel, H. P.; Leuenberger, M. N.; Tetard, L.; Khondaker, S. I. Photoluminescence quenching in single-layer MoS2 via oxygen plasma treatment. J. Phys. Chem. C 2014, 118, 21258–21263.

    CAS  Google Scholar 

  132. Kim, S.; Choi, M. S.; Qu, D. S.; Ra, C. H.; Liu, X. C.; Kim, M.; Song, Y. J.; Yoo, W. J. Effects of plasma treatment on surface properties of ultrathin layered MoS2. 2D Mater. 2016, 3, 035002.

    Google Scholar 

  133. Tian, X. Z.; Kim, D. S.; Yang, S. Z.; Ciccarino, C. J.; Gong, Y. J.; Yang, Y.; Yang, Y.; Duschatko, B.; Yuan, Y. K.; Ajayan, P. M. et al. Correlating the three-dimensional atomic defects and electronic properties of two-dimensional transition metal dichalcogenides. Nat. Mater. 2020, 19, 867–873.

    CAS  Google Scholar 

  134. Bosman, M.; Keast, V. J.; García-Muñoz, J. L.; D’Alfonso, A. J.; Findlay, S. D.; Allen, L. J. Two-dimensional mapping of chemical information at atomic resolution. Phys. Rev. Lett. 2007, 99, 086102.

    CAS  Google Scholar 

  135. Suenaga, K.; Koshino, M. Atom-by-atom spectroscopy at graphene edge. Nature 2010, 468, 1088–1090.

    CAS  Google Scholar 

  136. Zribi, J.; Khalil, L.; Zheng, B. Y.; Avila, J.; Pierucci, D.; Brulé, T.; Chaste, J.; Lhuillier, E.; Asensio, M. C.; Pan, A. L. et al. Strong interlayer hybridization in the aligned SnS2/WSe2 hetero-bilayer structure. npj 2D Mater. Appl. 2019, 3, 27.

    Google Scholar 

  137. Ponomarev, E.; Pásztor, Á.; Waelchli, A.; Scarfato, A.; Ubrig, N.; Renner, C.; Morpurgo, A. F. Hole transport in exfoliated monolayer MoS2. ACS Nano 2018, 12, 2669–2676.

    CAS  Google Scholar 

  138. Darlington, T. P.; Carmesin, C.; Florian, M.; Yanev, E.; Ajayi, O.; Ardelean, J.; Rhodes, D. A.; Ghiotto, A.; Krayev, A.; Watanabe, K. et al. Imaging strain-localized excitons in nanoscale bubbles of monolayer WSe2 at room temperature. Nat. Nanotechnol., in press, DOI: https://doi.org/10.1038/s41565-020-0730-5.

  139. Schuler, B.; Cochrane, K. A.; Kastl, C.; Barnard, E.; Wong, E.; Borys, N.; Schwartzberg, A. M.; Ogletree, D. F.; de Abajo, F. J. G.; Weber-Bargioni, A. Electrically driven photon emission from individual atomic defects in monolayer WS2. 2019, arXiv:1910.04612. arXiv.org e-Print archive. https://arxiv.org/abs/1910.04612 (accessed Oct 10, 2019).

  140. Patoka, P.; Ulrich, G.; Nguyen, A. E.; Bartels, L.; Dowben, P. A.; Turkowski, V.; Rahman, T. S.; Hermann, P.; Kästner, B.; Hoehl, A. et al. Nanoscale plasmonic phenomena in CVD-grown MoS2 monolayer revealed by ultra-broadband synchrotron radiation based nano-FTIR spectroscopy and near-field microscopy. Opt. Express 2016, 24, 1154–1164.

    CAS  Google Scholar 

  141. Spizzirri, P. G.; Fang, J. H.; Rubanov, S.; Gauja, E.; Prawer, S. Nano-Raman spectroscopy of silicon surfaces. 2010, arXiv:1002.2692. arXiv.org e-Print archive. https://arxiv.org/abs/1002.2692 (accessed Feb 13, 2010).

  142. Edelberg, D.; Rhodes, D.; Kerelsky, A.; Kim, B.; Wang, J.; Zangiabadi, A.; Kim, C.; Abhinandan, A.; Ardelean, J.; Scully, M. et al. Approaching the intrinsic limit in transition metal diselenides via point defect control. Nano Lett. 2019, 19, 4371–4379.

    CAS  Google Scholar 

  143. Shree, S.; George, A.; Lehnert, T.; Neumann, C.; Benelajla, M.; Robert, C.; Marie, X.; Watanabe, K.; Taniguchi, T.; Kaiser, U. et al. High optical quality of MoS2 monolayers grown by chemical vapor deposition. 2D Mater. 2019, 7, 015011.

    Google Scholar 

  144. Strauf, S.; Michler, P.; Klude, M.; Hommel, D.; Bacher, G.; Forchel, A. Quantum optical studies on individual acceptor bound excitons in a semiconductor. Phys. Rev. Lett. 2002, 89, 177403.

    CAS  Google Scholar 

  145. Zheng, Y J.; Chen, Y. F.; Huang, Y L.; Gogoi, P. K.; Li, M. Y.; Li, L. J.; Trevisanutto, P. E.; Wang, Q. X.; Pennycook, S. J.; Wee, A. T. S. et al. Point defects and localized excitons in 2D WSe2. ACS Nano 2019, 13, 6050–6059.

    CAS  Google Scholar 

  146. Kita, T.; Wada, O. Bound exciton states of isoelectronic centers in GaAs: N grown by an atomically controlled doping technique. Phys. Rev. B 2006, 74, 035213.

    Google Scholar 

  147. Gupta, S.; Yang, J. H.; Yakobson, B. I. Two-level quantum systems in two-dimensional materials for single photon emission. Nano Lett. 2018, 19, 408–414.

    Google Scholar 

  148. Zhang, Q.; Ren, Z. M.; Wu, N.; Wang, W. J.; Gao, Y. J.; Zhang, Q. Q.; Shi, J.; Zhuang, L.; Sun, X. N.; Fu, L. Nitrogen-doping induces tunable magnetism in ReS2. npj 2D Mater. Appl. 2018, 2, 22.

    Google Scholar 

  149. Li, B.; Xing, T.; Zhong, M. Z.; Huang, L.; Lei, N.; Zhang, J.; Li, J. B.; Wei, Z. M. A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat. Commun. 2017, 8, 1958.

    Google Scholar 

  150. Singh, N.; Schwingenschlogl, U. Extended moment formation in monolayer WS2 doped with 3d transition-metals. ACS Appl. Mater. Interfaces 2016, 8, 23886–23890.

    CAS  Google Scholar 

  151. Ramasubramaniam, A.; Naveh, D. Mn-doped monolayer MoS2: An atomically thin dilute magnetic semiconductor. Phys. Rev. B 2013, 87, 195201.

    Google Scholar 

  152. Zhao, X.; Xia, C. X.; Dai, X. Q.; Wang, T. X.; Chen, P.; Tian, L. Electronic and magnetic properties of X-doped (X = Ni, Pd, Pt) WS2 monolayer. J. Magn. Magn. Mater. 2016, 414, 45–48.

    CAS  Google Scholar 

  153. Gao, Y. Q.; Ganguli, N.; Kelly, P. J. Itinerant ferromagnetism in p-doped monolayers of MoS2. Phys. Rev. B 2019, 99, 220406.

    CAS  Google Scholar 

  154. Wang, Z. X.; Zhao, X. X.; Yang, Y. K.; Qiao, L.; Lv, L.; Chen, Z.; Di, Z. F.; Ren, W.; Pennycook, S. J.; Zhou, J. D. et al. Phase-controlled synthesis of monolayer W1−xRexS2 alloy with improved photoresponse performance. Small 2020, 16, 2000852.

    CAS  Google Scholar 

  155. Pandey, S. K.; Alsalman, H.; Azadani, J. G.; Izquierdo, N.; Low, T.; Campbell, S. A. Controlled p-type substitutional doping in large-area monolayer WSe2 crystals grown by chemical vapor deposition. Nanoscale 2018, 10, 21374–21385.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Ministry of Education (MOE), Singapore, under AcRF Tier 3 (MOE2018-T3-1-005) and the Singapore National Research Foundation for funding the research under medium-sized centre programme. M. B. acknowledges support from MOE’s AcRF Tier 1 (R-284-000-179-133).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michel Bosman or Goki Eda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loh, L., Zhang, Z., Bosman, M. et al. Substitutional doping in 2D transition metal dichalcogenides. Nano Res. 14, 1668–1681 (2021). https://doi.org/10.1007/s12274-020-3013-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3013-4

Keywords

Navigation