Skip to main content

Advertisement

Log in

New Insights into the Critical Importance of Intratubular Na+/H+ Exchanger 3 and Its Potential Therapeutic Implications in Hypertension

  • Hypertension and the Kidney (RM Carey , Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The sodium (Na+) and hydrogen (H+) exchanger 3 (NHE3), known as solute carrier family 9 member 3 (SLC9A3), mediates active transcellular Na+ and bicarbonate reabsorption in the small intestine of the gut and proximal tubules of the kidney. The purpose of this article is to review and discuss recent findings on the critical roles of intestinal and proximal tubule NHE3 in maintaining basal blood pressure (BP) homeostasis and their potential therapeutic implications in the development of angiotensin II (Ang II)–dependent hypertension.

Recent Findings

Recently, our and other laboratories have generated or used novel genetically modified mouse models with whole-body, kidney–specific, or proximal tubule–specific deletion of NHE3 to determine the critical roles and underlying mechanisms of NHE3 in maintaining basal BP homeostasis and the development of Ang II–induced hypertension at the whole-body, kidney, or proximal tubule levels. The new findings demonstrate that NHE3 contributes to about 10 to 15 mmHg to basal blood pressure levels, and that deletion of NHE3 at the whole-kidney or proximal tubule level, or pharmacological inhibition of NHE3 at the kidney level with an orally absorbable NHE3 inhibitor AVE-0657, attenuates ~ 50% of Ang II–induced hypertension in mice.

Summary

The results support the proof-of-concept hypothesis that NHE3 plays critical roles in physiologically maintaining normal BP and in the development of Ang II–dependent hypertension. Our results also strongly suggest that NHE3 in the proximal tubules of the kidney may be therapeutically targeted to treat poorly controlled hypertension in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):e13–e115 This is the most recently updated and important guideline for the prevention, detection, evaluation, and management of hypertension from the American College of Cardiology/American Heart Association.

    CAS  PubMed  Google Scholar 

  2. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, et al. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension. 2008;51(6):1403–19.

    CAS  PubMed  Google Scholar 

  3. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De SG, et al. Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation. 2010;121(7):e46–215.

    PubMed  Google Scholar 

  4. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA. 2002;288(23):2981–97.

    Google Scholar 

  5. James PA, Oparil S, Carter BL, Cushman WC, Dennison HC, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–20.

    CAS  PubMed  Google Scholar 

  6. • Titze J, Luft FC. Speculations on salt and the genesis of arterial hypertension. Kidney Int. 2017;91(6):1324–35 This article reviews and discusses recent studies on the roles and controversies of salt in the development of hypertension.

    CAS  PubMed  Google Scholar 

  7. Frisoli TM, Schmieder RE, Grodzicki T, Messerli FH. Salt and hypertension: is salt dietary reduction worth the effort? Am J Med. 2012;125(5):433–9.

    CAS  PubMed  Google Scholar 

  8. He FJ, Tan M, Ma Y, MacGregor GA. Salt reduction to prevent hypertension and cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75(6):632–47.

    CAS  PubMed  Google Scholar 

  9. Zachos NC, Tse M, Donowitz M. Molecular physiology of intestinal Na+/H+ exchange. Annu Rev Physiol. 2005;67:411–43.

    CAS  PubMed  Google Scholar 

  10. •• Pedersen SF, Counillon L. The SLC9A-C mammalian Na+/H+ exchanger family: molecules, mechanisms, and physiology. Physiol Rev. 2019;99(4):2015–113 This article comprehensively reviews the genomics, molecular, and physiological roles of the Na+/H+ exchanger family including NHE3.

  11. Zhuo JL, Li XC. Proximal nephron. Compr Physiol. 2013;3(3):1079–123.

    PubMed  PubMed Central  Google Scholar 

  12. Thomson SC, Blantz RC. Glomerulotubular balance, tubuloglomerular feedback, and salt homeostasis. J Am Soc Nephrol. 2008;19(12):2272–5.

    PubMed  Google Scholar 

  13. Guyton AC. Blood pressure control--special role of the kidneys and body fluids. Science. 1991;252:1813–6.

    CAS  PubMed  Google Scholar 

  14. Coffman TM. Under pressure: the search for the essential mechanisms of hypertension. Nat Med. 2011;17(11):1402–9.

    CAS  PubMed  Google Scholar 

  15. Hall JE, Granger JP, do Carmo JM, da Silva AA, Dubinion J, George E, et al. Hypertension: physiology and pathophysiology. Compr Physiol. 2012;2(4):2393–442.

    PubMed  Google Scholar 

  16. •• Schultheis PJ, Clarke LL, Meneton P, Miller ML, Soleimani M, Gawenis LR, et al. Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet. 1998;19:282–5 This is the 1st study reporting for the 1st time that global deletion of the Nhe3 gene lowered basal blood pressure and induced abnormal intestinal structural and absorptive phenotypes in mice.

    CAS  PubMed  Google Scholar 

  17. Noonan WT, Woo AL, Nieman ML, Prasad V, Schultheis PJ, Shull GE, et al. Blood pressure maintenance in NHE3-deficient mice with transgenic expression of NHE3 in small intestine. Am J Phys Regul Integr Comp Phys. 2005;288:R685–91.

    CAS  Google Scholar 

  18. •• Li XC, Shull GE, Miguel-Qin E, Zhuo JL. Role of the Na+/H+ exchanger 3 in angiotensin II-induced hypertension. Physiol Genomics. 2015;47(10):479–87 This is the 1st study showing that angiotensin II-induced hypertension was attenuated in global Nhe3/ mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. •• Li XC, Shull GE, Miguel-Qin E, Chen F, Zhuo JL. Role of the Na+/H+ exchanger 3 in angiotensin II-induced hypertension in NHE3-deficient mice with transgenic rescue of NHE3 in small intestines. Phys Rep. 2015;3:e12605 This study shows that angiotensin II-induced hypertension was attenuated in global Nhe3/ mice with the transgenic rescue of the Nhe3 gene in small intestines, suggesting an important role of NHE3 in the kidney, primarily in the proximal tubules.

    Google Scholar 

  20. •• Li XC, Soleimani M, Zhu D, Rubera I, Tauc M, Zheng X, et al. Proximal tubule-specific deletion of the Na+/H+ exchanger 3 promotes the pressure natriuresis response and lowers blood pressure in mice. Hypertension. 2018;72:1328–36 This study used the state-of-the art Sglt2-Cre/Nhe3-LoxP approach to generate a mutant mouse model with proximal tubule-specific deletion of NHE3 in the kidney, and showed that NHE3 in the proximal tubules of the kidney plays a critical physiological role in maintaining normal blood pressure homeostasis.

    CAS  PubMed  Google Scholar 

  21. •• Li XC, Zhu D, Chen X, Zheng X, Zhao C, Zhang J, et al. Proximal tubule-specific deletion of the NHE3 (Na+/H+ Exchanger 3) in the kidney attenuates Ang II (angiotensin II)-induced hypertension in mice. Hypertension. 2019;74(3):526–35 This study showed for the 1st time that proximal tubule-specific deletion of NHE3 attenuated angiotensin II-induced hypertension, supporting an important role of NHE3 in the proximal tubules in the development of angiotensin II-dependet hypertension.

    CAS  PubMed  Google Scholar 

  22. • Fenton RA, Poulsen SB, de la Mora CS, Soleimani M, Dominguez Rieg JA, Rieg T. Renal tubular NHE3 is required in the maintenance of water and sodium chloride homeostasis. Kidney Int. 2017;92(2):397–414. https://doi.org/10.1016/j.kint.2017.02.001This study used the Pax8-Cre/Nhe3loxlox approach to generate a mutant mouse model with renal epithelial cell-specific deletion of NHE3 in the kidney, and showed that panepithelial deletion of NHE3 in the kidney lowered basal blood pressure in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. He P, Yun CC. Mechanisms of the regulation of the intestinal Na+/H+ exchanger NHE3. J Biomed Biotechnol. 2010;2010:238080. https://doi.org/10.1155/2010/238080.

    Article  CAS  PubMed  Google Scholar 

  24. Cox GA, Lutz CM, Yang CL, Biemesderfer D, Bronson RT, Fu A, et al. Sodium/hydrogen exchanger gene defect in slow-wave epilepsy mutant mice. Cell. 1997;91(1):139–48. https://doi.org/10.1016/s0092-8674(01)80016-7.

    Article  CAS  PubMed  Google Scholar 

  25. Schultheis PJ, Clarke LL, Meneton P, Harline MC, Boivin GP, Stemmermann G, et al. Targeted disruption of the murine Na/H exchanger isoform 2 gene causes reduced viability of gastric parietal cells and loss of net acid secretion. J Clin Invest. 1998;101:1243–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wormmeester L, Sanchez de Medina F, Kokke F, Tse CM, Khurana S, Bowser J, et al. Quantitative contribution of NHE2 and NHE3 to rabbit ileal brush-border Na+/H+ exchange. Am J Phys. 1998;274(5):C1261–72. https://doi.org/10.1152/ajpcell.1998.274.5.C1261.

  27. Xu H, Zhang B, Li J, Wang C, Chen H, Ghishan FK. Impaired mucin synthesis and bicarbonate secretion in the colon of NHE8 knockout mice. Am J Physiol Gastrointest Liver Physiol. 2012;303(3):G335–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015 – 2020 Dietary guidelines for Americans. 8th Edition. December 2015. Available at https://health.gov/our-work/food-nutrition/previous-dietary-guidelines/2015.

  29. Gawenis LR, Stien X, Shull GE, Schultheis PJ, Woo AL, Walker NM, et al. Intestinal NaCl transport in NHE2 and NHE3 knockout mice. Am J Physiol Gastrointest Liver Physiol. 2002;282(5):G776–84.

    CAS  PubMed  Google Scholar 

  30. Li XC, Zheng X, Chen X, Zhao C, Zhu D, Zhang J, et al. Genetic and genomic evidence for an important role of the Na+/H+ exchanger 3 in blood pressure regulation and angiotensin II-induced hypertension. Physiol Genomics. 2019;51(4):97–108. https://doi.org/10.1152/physiolgenomics.00122.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. • Elijovich F, Weinberger MH, Anderson CA, Appel LJ, Bursztyn M, Cook NR, et al. Salt sensitivity of blood pressure: a scientific statement from the American Heart Association. Hypertension. 2016;68(3):e7–e46. https://doi.org/10.1161/HYP.0000000000000047This article represents the consensus view from the American Heart Association Council on Hypertension, Council on Genomics, and Stroke Council on salt sensitivity of blood pressure and its role in the pathogenesis of hypertension in humans.

    Article  CAS  PubMed  Google Scholar 

  32. Burt VL, Whelton P, Roccella EJ, Brown C, Cutler JA, Higgins M, et al. Prevalence of hypertension in the US adult population: results from the Third National Health and Nutrition Examination Survey, 1988–1991. Hypertension. 1995;25:305–13.

    CAS  PubMed  Google Scholar 

  33. Meneton P, Jeunemaitre X, de Wardener HE, MacGregor GA. Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases. Physiol Rev. 2005;85:679–715.

    CAS  PubMed  Google Scholar 

  34. Rapp JP. Dahl salt-susceptible and salt-resistant rats. A review Hypertension. 1982;4(6):753–63. https://doi.org/10.1161/01.hyp.4.6.753.

    Article  CAS  PubMed  Google Scholar 

  35. Joe B, Shapiro JI. Molecular mechanisms of experimental salt-sensitive hypertension. J Am Heart Assoc. 2012;1(3):e002121. https://doi.org/10.1161/JAHA.112.002121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Harris PJ, Navar LG. Tubular transport responses to angiotensin. Am J Phys. 1985;248(5 Pt 2):F621–30. https://doi.org/10.1152/ajprenal.1985.248.5.F621.

    Article  CAS  Google Scholar 

  37. Navar LG, Kobori H, Prieto-Carrasquero M. Intrarenal angiotensin II and hypertension. Curr Hypertens Rep. 2003;5(2):135–43. https://doi.org/10.1007/s11906-003-0070-5.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li XC, Zhu D, Zheng X, Zhang J, Zhuo JL. Intratubular and intracellular renin-angiotensin system in the kidney: a unifying perspective in blood pressure control. Clin Sci (Lond). 2018;132(13):1383–401. https://doi.org/10.1042/CS20180121.

    Article  CAS  Google Scholar 

  39. Biemesderfer D, Reilly RF, Exner M, Igarashi P, Aronson PS. Immunocytochemical characterization of Na+-H+ exchanger isoform NHE-1 in rabbit kidney. Am J Phys. 1992;263:F833–40.

    CAS  Google Scholar 

  40. Krapf R, Solioz M. Na/H antiporter mRNA expression in single nephron segments of rat kidney cortex. J Clin Invest. 1991;88:783–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bookstein C, Musch MW, DePaoli A, Xie Y, Villereal M, Rao MC, et al. A unique sodium-hydrogen exchange isoform (NHE-4) of the inner medulla of the rat kidney is induced by hyperosmolarity. J Biol Chem. 1994;269:29704–9.

    CAS  PubMed  Google Scholar 

  42. Soleimani M, Singh G, Bizal GL, Gullans SR, McAteer JA. Na+/H+ exchanger isoforms NHE-2 and NHE-1 in inner medullary collecting duct cells. Expression, functional localization, and differential regulation. J Biol Chem. 1994;269:27973–8.

    CAS  PubMed  Google Scholar 

  43. Goyal S, Mentone S, Aronson PS. Immunolocalization of NHE8 in rat kidney. Am J Physiol Ren Physiol. 2005;288:F530–8.

    CAS  Google Scholar 

  44. Goyal S, Vanden Heuvel G, Aronson PS. Renal expression of novel Na+/H+ exchanger isoform NHE8. Am J Physiol Ren Physiol. 2003;284:F467–73.

    CAS  Google Scholar 

  45. Miyazaki E, Sakaguchi M, Wakabayashi S, Shigekawa M, Mihara K. NHE6 protein possesses a signal peptide destined for endoplasmic reticulum membrane and localizes in secretory organelles of the cell. J Biol Chem. 2001;276:49221–7.

    CAS  PubMed  Google Scholar 

  46. Xu H, Chen R, Ghishan FK. Subcloning, localization, and expression of the rat intestinal sodium-hydrogen exchanger isoform 8. Am J Physiol Gastrointest Liver Physiol. 2005;289:G36–41.

    CAS  PubMed  Google Scholar 

  47. Biemesderfer D, Pizzonia J, Abu-Alfa A, Exner M, Reilly R, Igarashi P, et al. NHE3: a Na+/H+ exchanger isoform of renal brush border. Am J Phys. 1993;265:F736–42.

    CAS  Google Scholar 

  48. Amemiya M, Loffing J, Lotscher M, Kaissling B, Alpern RJ, Moe OW. Expression of NHE-3 in the apical membrane of rat renal proximal tubule and thick ascending limb. Kidney Int. 1995;48:1206–15.

    CAS  PubMed  Google Scholar 

  49. Aronson PS, Nee J, Suhm MA. Modifier role of internal H+ in activating the Na+-H+ exchanger in renal microvillus membrane vesicles. Nature. 1982;299:161–3.

    CAS  PubMed  Google Scholar 

  50. Aronson PS. Mechanisms of active H+ secretion in the proximal tubule. Am J Phys. 1983;245:F647–59.

    CAS  Google Scholar 

  51. Bobulescu IA, Dwarakanath V, Zou L, Zhang J, Baum M, Moe OW. Glucocorticoids acutely increase cell surface Na+/H+ exchanger-3 (NHE3) by activation of NHE3 exocytosis. Am J Physiol Ren Physiol. 2005;289:F685–91.

    CAS  Google Scholar 

  52. Bobulescu IA, Quinones H, Gisler SM, Di SF, Hu MC, Shi M, et al. Acute regulation of renal Na+/H+ exchanger NHE3 by dopamine: role of protein phosphatase 2A. Am J Physiol Ren Physiol. 2010;298(5):F1205–13. https://doi.org/10.1152/ajprenal.00708.2009.

    Article  CAS  Google Scholar 

  53. D'Souza S, Garcia-Cabado A, Yu F, Teter K, Lukacs G, Skorecki K, et al. The epithelial sodium-hydrogen antiporter Na+/H+ exchanger 3 accumulates and is functional in recycling endosomes. J Biol Chem. 1998;273:2035–43.

    CAS  PubMed  Google Scholar 

  54. Hu MC, Fan L, Crowder LA, Karim-Jimenez Z, Murer H, Moe OW. Dopamine acutely stimulates Na+/H+ exchanger (NHE3) endocytosis via clathrin-coated vesicles: dependence on protein kinase A-mediated NHE3 phosphorylation. J Biol Chem. 2001;276:26906–15.

    CAS  PubMed  Google Scholar 

  55. Leong PK, Yang LE, Holstein-Rathlou NH, McDonough AA. Angiotensin II clamp prevents the second step in renal apical NHE3 internalization during acute hypertension. Am J Physiol Ren Physiol. 2002;283:F1142–50.

    Google Scholar 

  56. • Li XC, Zhuo JL. Phosphoproteomic analysis of AT1 receptor-mediated signaling responses in proximal tubules of angiotensin II-induced hypertensive rats. Kidney Int. 2011;80:620–32 This study showed that a high pressor dose of angiotensin infusion decreased, whereas a low pressor dose of Ang II infusion increased, NHE3 expression in apical membranes of the proximal tubules in rats.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. McDonough AA. Mechanisms of proximal tubule sodium transport regulation that link extracellular fluid volume and blood pressure. Am J Phys Regul Integr Comp Phys. 2010;298:R851–61.

    CAS  Google Scholar 

  58. Moe OW. Acute regulation of proximal tubule apical membrane Na/H exchanger NHE-3: role of phosphorylation, protein trafficking, and regulatory factors. J Am Soc Nephrol. 1999;10:2412–25.

    CAS  PubMed  Google Scholar 

  59. Li XC, Hopfer U, Zhuo JL. AT1 receptor-mediated uptake of angiotensin II and NHE-3 expression in proximal tubule cells through the microtubule-dependent endocytic pathway. Am J Physiol Ren Physiol. 2009;297:F1342–52.

    CAS  Google Scholar 

  60. Li XC, Hopfer U, Zhuo JL. Novel signaling mechanisms of intracellular angiotensin II-induced NHE3 expression and activation in mouse proximal tubule cells. Am J Physiol Ren Physiol. 2012;303:F1617–28.

    CAS  Google Scholar 

  61. Murtazina R, Kovbasnjuk O, Zachos NC, Li X, Chen Y, Hubbard A, et al. Tissue-specific regulation of sodium/proton exchanger isoform 3 activity in Na(+)/H(+) exchanger regulatory factor 1 (NHERF1) null mice. cAMP inhibition is differentially dependent on NHERF1 and exchange protein directly activated by cAMP in ileum versus proximal tubule. J Biol Chem. 2007;282:25141–51.

    CAS  PubMed  Google Scholar 

  62. Wade JB, Liu J, Coleman RA, Cunningham R, Steplock DA, Lee-Kwon W, et al. Localization and interaction of NHERF isoforms in the renal proximal tubule of the mouse. Am J Phys Cell Phys. 2003;285:C1494–503.

    CAS  Google Scholar 

  63. Weinman EJ, Cunningham R, Shenolikar S. NHERF and regulation of the renal sodium-hydrogen exchanger NHE3. Pflugers Arch. 2005;450:137–44.

    CAS  PubMed  Google Scholar 

  64. Bacic D, Kaissling B, McLeroy P, Zou L, Baum M, Moe OW. Dopamine acutely decreases apical membrane Na/H exchanger NHE3 protein in mouse renal proximal tubule. Kidney Int. 2003;64:2133–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Jose PA, Soares-da-Silva P, Eisner GM, Felder RA. Dopamine and G protein-coupled receptor kinase 4 in the kidney: role in blood pressure regulation. Biochim Biophys Acta. 2010;1802:1259–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Bloch RD, Zikos D, Fisher KA, Schleicher L, Oyama M, Cheng JC, et al. Activation of proximal tubular Na+-H+ exchange by angiotensin II. Am J Phys. 1992;263:F135–43.

    CAS  Google Scholar 

  67. Pao AC, Bhargava A, Di SF, Quigley R, Shao X, Wang J, et al. Expression and role of serum and glucocorticoid-regulated kinase 2 in the regulation of Na+/H+ exchanger 3 in the mammalian kidney. Am J Physiol Ren Physiol. 2010;299:F1496–506.

    CAS  Google Scholar 

  68. Wang D, Zhang H, Lang F, Yun CC. Acute activation of NHE3 by dexamethasone correlates with activation of SGK1 and requires a functional glucocorticoid receptor. Am J Phys Cell Phys. 2007;292:C396–404.

    CAS  Google Scholar 

  69. Fuster DG, Bobulescu IA, Zhang J, Wade J, Moe OW. Characterization of the regulation of renal Na+/H+ exchanger NHE3 by insulin. Am J Physiol Ren Physiol. 2007;292:F577–85.

    CAS  Google Scholar 

  70. Yun CC. Activation of Na+/H+ exchanger NHE3 by angiotensin II is mediated by inositol 1,4,5-triphosphate (IP3) receptor-binding protein released with IP3 (IRBIT) and Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 2010;285:27869–78.

    PubMed  PubMed Central  Google Scholar 

  71. Du Z, Ferguson W, Wang T. Role of PKC and calcium in modulation of effects of angiotensin II on sodium transport in proximal tubule. Am J Physiol Ren Physiol. 2003;284:F688–92.

    CAS  Google Scholar 

  72. Houillier P, Chambrey R, Achard JM, Froissart M, Poggioli J, Paillard M. Signaling pathways in the biphasic effect of angiotensin II on apical Na/H antiport activity in proximal tubule. Kidney Int. 1996;50:1496–505.

    CAS  PubMed  Google Scholar 

  73. Jourdain M, Amiel C, Friedlander G. Modulation of Na-H exchange activity by angiotensin II in opossum kidney cells. Am J Phys. 1992;263:C1141–6.

    CAS  Google Scholar 

  74. Karim Z, Defontaine N, Paillard M, Poggioli J. Protein kinase C isoforms in rat kidney proximal tubule: acute effect of angiotensin II. Am J Phys. 1995;269:C134–40.

    CAS  Google Scholar 

  75. •• Kemp BA, Howell NL, Gildea JJ, Keller SR, Padia SH, Carey RM. AT2 receptor activation induces natriuresis and lowers blood pressure. Circ Res. 2014;115(3):388–99. https://doi.org/10.1161/CIRCRESAHA.115.304110This study showed that AT2 receptor activation induced NHE3 internalization and natriuresis in a bradykinin-nitric oxide-cGMP-dependent manner.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. •• Kemp BA, Howell NL, Keller SR, Gildea JJ, Shao W, Navar LG, et al. Defective renal angiotensin III and AT2 receptor signaling in prehypertensive spontaneously hypertensive rats. J Am Heart Assoc. 2019;8(9):e012016. https://doi.org/10.1161/JAHA.119.012016This study showed impaired Ang III / AT2R signaling as a possible primary defect in prehypertensive SHR in part by failing to induce NHE3 internalization from apical membranes of proximal tubules.

    Article  PubMed  PubMed Central  Google Scholar 

  77. •• Kemp BA, Howell NL, Gildea JJ, Keller SR, Carey RM. Identification of a primary renal AT2 receptor defect in spontaneously hypertensive rats. Circ Res. 2020;126(5):644–59. https://doi.org/10.1161/CIRCRESAHA.119.316193This study demonstrated that an AT2R agonist C21 induces NHE3 internalization and natriuretic response in WKY, but not in prehypertensive SHR, and suggested that this AT2R/cGMP/NHE3 signaling defect may contribute to the development of hypertension in adult SHR.

    Article  CAS�� PubMed  PubMed Central  Google Scholar 

  78. Schwark JR, Jansen HW, Lang HJ, Krick W, Burckhardt G, Hropot M. S3226, a novel inhibitor of Na+/H+ exchanger subtype 3 in various cell types. Pflugers Arch. 1998;436(5):797–800. https://doi.org/10.1007/s004240050704.

    Article  CAS  PubMed  Google Scholar 

  79. Vallon V, Schwark JR, Richter K, Hropot M. Role of Na(+)/H(+) exchanger NHE3 in nephron function: micropuncture studies with S3226, an inhibitor of NHE3. Am J Physiol Ren Physiol. 2000;278(3):F375–9. https://doi.org/10.1152/ajprenal.2000.278.3.F375.

    Article  CAS  Google Scholar 

  80. Wang T, Yang CL, Abbiati T, Schultheis PJ, Shull GE, Giebisch G, et al. Mechanism of proximal tubule bicarbonate absorption in NHE3 null mice. Am J Phys. 1999;277:F298–302.

    CAS  Google Scholar 

  81. Woo AL, Noonan WT, Schultheis PJ, Neumann JC, Manning PA, Lorenz JN, et al. Renal function in NHE3-deficient mice with transgenic rescue of small intestinal absorptive defect. Am J Physiol Ren Physiol. 2003;284(6):F1190–8. https://doi.org/10.1152/ajprenal.00418.2002.

    Article  CAS  Google Scholar 

  82. Poleev A, Fickenscher H, Mundlos S, Winterpacht A, Zabel B, Fidler A, et al. PAX8, a human paired box gene: isolation and expression in developing thyroid, kidney and Wilms’ tumors. Development. 1992;116(3):611–23.

    CAS  PubMed  Google Scholar 

  83. • Li HC, Du Z, Barone S, Rubera I, AA MD, Tauc M, et al. Proximal tubule specific knockout of the Na+/H+ exchanger NHE3: effects on bicarbonate absorption and ammonium excretion. J Mol Med (Berl). 2013;91(8):951–63. https://doi.org/10.1007/s00109-013-1015-3This study showed a near normal body acid-base status in mice with proximal tubule-specific deletion of NHE3 in the kidney and suggests that deletion of NHE3 in the proximal tubules does not induce marked acid-base abnormality in mice, as expected.

    Article  CAS  Google Scholar 

  84. • Rubera I, Poujeol C, Bertin G, Hasseine L, Counillon L, Poujeol P, et al. Specific Cre/Lox recombination in the mouse proximal tubule. J Am Soc Nephroll. 2004;15:2050–6 This is the 1st study to use the Sglt2-Cre/LoxP recombination to generate a transgenic mouse model with proximal tubule-specific expression of Cre in the kidney. This mouse model may be the appropriate Cre model for generation of gain of function or loss of function selectively in the proximal tubules of the kidney.

    CAS  Google Scholar 

  85. • Nguyen MT, Han J, Ralph DL, Veiras LC, McDonough AA. Short-term nonpressor angiotensin II infusion stimulates sodium transporters in proximal tubule and distal nephron. Phys Rep. 2015;3(9):e12496. https://doi.org/10.14814/phy2.12496This study showed that short-term infusion of a nonpressor dose of angiotensin II in rats increased the expression of sodium transporters including NHE3 in the proximal tubules.

    Article  CAS  Google Scholar 

  86. Riquier-Brison AD, Leong PK, Pihakaski-Maunsbach K, McDonough AA. Angiotensin II stimulates trafficking of NHE3, NaPi2, and associated proteins into the proximal tubule microvilli. Am J Physiol Ren Physiol. 2010;298(1):F177–86. https://doi.org/10.1152/ajprenal.00464.2009.

    Article  CAS  Google Scholar 

  87. Nguyen MT, Lee DH, Delpire E, McDonough AA. Differential regulation of Na+ transporters along nephron during ANG II-dependent hypertension: distal stimulation counteracted by proximal inhibition. Am J Physiol Ren Physiol. 2013;305(4):F510–9. https://doi.org/10.1152/ajprenal.00183.2013.

    Article  CAS  Google Scholar 

  88. • Li XC, Zhou X, Zhuo JL. Evidence for a physiological mitochondrial angiotensin II system in the kidney proximal tubules: novel roles of mitochondrial Ang II/AT1a/O2- and Ang II/AT2/NO signaling. Hypertension. 2020;76(1):121–32 10.1161/HYPERTENSIONAHA.119.13942. This study showed that proximal tubule-specific, mitochondria-targeting expression of an intracellular angiotensin II fusion protein in the kidney elevated blood pressure that was attenuated in proximal tubule-specific NHE3 knockout mice, suggesting that NHE3 is the downstream target of intracellular/mitochondrial angiotensin II.

    CAS  PubMed  Google Scholar 

  89. •• Li XC, APO L, Zheng X, Zhao C, Chen X, Zhang L, et al. Proximal tubule-specific deletion of angiotensin II type 1a receptors in the kidney attenuates circulating and intratubular angiotensin II-induced hypertension in PT-Agtr1a-/- mice. Hypertension. 2021;77(4):1285–98. https://doi.org/10.1161/HYPERTENSIONAHA.120.16336This is the 1st study to use the Sglt2-Cre/Agtr1a-LoxP approach to generate a mutant mouse model with proximal tubule-specific deletion of angiotensin II type 1a receptors in the kidney, and showed that Ang II-induced hypertension was attenuated in these mice, similar to proximal tubule-specific NHE3 knockout mice.

    Article  PubMed  Google Scholar 

  90. •• Carey RM, Calhoun DA, Bakris GL, Brook RD, Daugherty SL, Dennison-Himmelfarb CR, et al. Hypertension. 2018;72(5):e53–90. https://doi.org/10.1161/HYP.0000000000000084This is one of the most important documents on the mechanisms, diagnosis, and management of resistant hypertension from American Heart Association’s multiple Councils. Even treated with up to three different classes of antihypertensive drugs, some hypertensive patients still fail to control their high blood pressure to prevent target organ damage.

    Article  CAS  PubMed  Google Scholar 

  91. •• Carey RM, Sakhuja S, Calhoun DA, Whelton PK, Muntner P. Prevalence of apparent treatment-resistant hypertension in the United States. Hypertension. 2019;73(2):424–31. https://doi.org/10.1161/HYPERTENSIONAHA.118.12191This study reviewed and discussed the prevalence of apparent treatment-resistant hypertension in the United States and suggests that further studies are needed to elucidate the novel mechanisms and targets of apparent treatment-resistant hypertension.

    Article  CAS  PubMed  Google Scholar 

  92. LaPointe MS, Sodhi C, Sahai A, Batlle D. Na+/H+ exchange activity and NHE-3 expression in renal tubules from the spontaneously hypertensive rat. Kidney Int. 2002;62:157–65.

    CAS  PubMed  Google Scholar 

  93. Aldred KL, Harris PJ, Eitle E. Increased proximal tubule NHE-3 and H+-ATPase activities in spontaneously hypertensive rats. J Hypertens. 2000;18(5):623–8. https://doi.org/10.1097/00004872-200018050-00016.

    Article  CAS  PubMed  Google Scholar 

  94. Kelly MP, Quinn PA, Davies JE, Ng LL. Activity and expression of Na+-H+ exchanger isoforms 1 and 3 in kidney proximal tubules of hypertensive rats. Circ Res. 1997;80(6):853–60. https://doi.org/10.1161/01.res.80.6.853.

    Article  CAS  PubMed  Google Scholar 

  95. • Pontes RB, Crajoinas RO, Nishi EE, Oliveira-Sales EB, Girardi AC, Campos RR, et al. Renal nerve stimulation leads to the activation of the Na+/H+ exchanger isoform 3 via angiotensin II type I receptor. Am J Physiol Ren Physiol. 2015;308(8):F848–56. https://doi.org/10.1152/ajprenal.00515.2014This study showed that the stimulation of renal sympathetic nerves activated intrarenal angiotensin II receptors to increase NHE3 activity in rats, suggesting that NHE3 in the kidney is a potential downstream target of increased renal sympathetic nervous activity, which contributes to increase in arterial blood pressure.

    Article  CAS  Google Scholar 

  96. •• Linz D, Wirth K, Linz W, Heuer HO, Frick W, Hofmeister A, et al. Antihypertensive and laxative effects by pharmacological inhibition of sodium-proton-exchanger subtype 3-mediated sodium absorption in the gut. Hypertension. 2012;60:1560–7 This is a proof of concept study showing that an orally nonabsorbable NHE3 inhibitor lowered blood pressure in lean or obese SHR by inhibiting NHE3 in the gatrointestinal tract.

    CAS  PubMed  Google Scholar 

  97. Linz B, Hohl M, Reil JC, Böhm M, Linz D. Inhibition of NHE3-mediated sodium absorption in the gut reduced cardiac end-organ damage without deteriorating renal function in obese spontaneously hypertensive rats. J Cardiovasc Pharmacol. 2016;67(3):225–31. https://doi.org/10.1097/FJC.0000000000000336.

    Article  CAS  PubMed  Google Scholar 

  98. Linz B, Saljic A, Hohl M, Gawałko M, Jespersen T, Sanders P, et al. Inhibition of sodium-proton-exchanger subtype 3-mediated sodium absorption in the gut: a new antihypertensive concept. Int J Cardiol Heart Vasc. 2020;29:100591. https://doi.org/10.1016/j.ijcha.2020.100591.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Alpern RJ. Cell mechanisms of proximal tubule acidification. Physiol Rev. 1990;70(1):79–114. https://doi.org/10.1152/physrev.1990.70.1.79.

    Article  CAS  PubMed  Google Scholar 

  100. FDA. Drug trials snapshots: IBSRELA. https://www.fda.gov/drugs/drug-approvals-and-databases/drug-trials-snapshots-ibsrela. Approval Date: September 12, 2019.

Download references

Acknowledgements

All experiments were performed and data collected in the laboratory of Dr. Jia Zhuo at the University of Mississippi Medical Center in Jackson, Mississippi, and Tulane University School of Medicine, in New Orleans, Louisiana, respectively. We specifically thank Dr. Gary Shull of the University of Cincinnati College of Medicine for generously providing us with breeding pairs of global Nhe3−/− and tgNhe3−/− mice, Dr. Manoocher Soleimani of the University of Cincinnati School of Medicine for generously providing us with breeding pairs of NHE3-floxed mice, Drs. Isabelle Rubera and Michell Tauc from the Laboratoire de Physiomédecine Moléculaire, LP2M, UMR-CNRS 7370, Université Côte d'Azur, Nice Cedex 2, France (I.R., M.T.) for generously providing us with breeding pairs of iL1-sglt2-Cre mouse strain, and Sanofi-Aventis for providing the absorbable NHE3 inhibitor AVE-0657 for our studies. We also thank our past and present technicians and postdoctoral fellows for their excellent technical support and assistance over many years.

Funding

This work was supported in part by grants from the National Institute of Diabetes and Digestive and Kidney Diseases (2R01DK102429-03A1, 2R01DK067299-10A1, and 1R01DK102429-01) and National Heart, Lung, And Blood Institute (1R56HL130988-01) to Dr. Jia L. Zhuo.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Jia Zhuo and Xiao Li; writing draft preparations: Jia Zhuo and Xiao Li; review and editing: Jia Zhuo, Manoocher Soleimani, and Xiao Li; finalization: Jia Zhuo, Manoocher Soleimani, and Xiao Li

Corresponding authors

Correspondence to Jia Long Zhuo or Xiao Chun Li.

Ethics declarations

Ethics Approval and Consent to Participate

This article does not contain any studies on humans. All animal studies from the authors and cited in this article were approved by the IACUC of the University of Mississippi Medical Center and Tulane University School of Medicine.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Hypertension and the Kidney

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuo, J.L., Soleimani, M. & Li, X.C. New Insights into the Critical Importance of Intratubular Na+/H+ Exchanger 3 and Its Potential Therapeutic Implications in Hypertension. Curr Hypertens Rep 23, 34 (2021). https://doi.org/10.1007/s11906-021-01152-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11906-021-01152-7

Keywords

Navigation