Skip to main content
Log in

Fullerene-like models for microporous carbon

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Microporous carbons are important in a wide variety of applications, ranging from pollution control to supercapacitors, yet their structure at the molecular level is poorly understood. Over the years, many structural models have been put forward, but none has been entirely satisfactory in explaining the properties of the carbons. The discovery of fullerenes and fullerene-related structures such as carbon nanotubes gave us a new perspective on the structure of solid carbon, and in 1997 it was suggested that microporous carbon may have a structure related to that of the fullerenes. Recently, evidence in support of such a structure has been obtained using aberration-corrected transmission electron microscopy, electron energy loss spectroscopy and other techniques. This article describes the development of ideas about the structure of microporous carbon, and reviews the experimental evidence for a fullerene-related structure. Theoretical models of the structural evolution of microporous carbon are summarised, and the use of fullerene-like models to predict the adsorptive properties of microporous carbons are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Derbyshire F, Jagtoyen M, Thwaites M (1995) In: Patrick JW (ed) Porosity in carbons: characterization and applications. Edward Arnold, London, p 227

    Google Scholar 

  2. Patrick JW (ed) (1995) Porosity in carbons: characterization and applications. Edward Arnold, London

    Google Scholar 

  3. Marsh H, Rodriguez-Reinoso F (2006) Activated carbon. Elsevier, Oxford

    Google Scholar 

  4. Harris PJF, Tsang SC (1997) Philos Mag A 76:667

    Article  CAS  Google Scholar 

  5. Harris PJF (1997) Int Mater Rev 42:206

    Article  CAS  Google Scholar 

  6. Emmett PH (1948) Chem Rev 43:69

    Article  CAS  Google Scholar 

  7. Franklin RE (1951) Proc R Soc A 209:196

    Article  CAS  Google Scholar 

  8. Lim YI, Bhatia SK (2011) J Membr Sci 369:319

    Article  CAS  Google Scholar 

  9. Sitprasert C, Zhu ZH, Wang FY, Rudolph V (2011) Chem Eng Sci 66:5447

    Article  CAS  Google Scholar 

  10. Ergun S, Tiensuu VH (1959) Acta Crystallogr A 12:1050

    Article  CAS  Google Scholar 

  11. Burian A, Ratuszna A, Dore JC, Howells SW (1998) Carbon 36:1613

    Article  CAS  Google Scholar 

  12. Ban LL (1972) In: Roberts MW, Thomas JM (eds) Surface and defect properties of solids, vol 1. Chemical Society, London, p 54

    Chapter  Google Scholar 

  13. Ban LL, Crawford D, Marsh H (1975) J Appl Crystallogr 8:415

    Article  Google Scholar 

  14. Jenkins GM, Kawamura K (1971) Nature 231:175

    Article  CAS  Google Scholar 

  15. Oberlin A (1989) In: Thrower PA (ed) Chemistry and physics of carbon, vol 22. Dekker, New York, p 1

    Google Scholar 

  16. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162

    Article  CAS  Google Scholar 

  17. Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Nature 347:354

    Article  Google Scholar 

  18. Kroto HW (1992) Angew Chem 31:111

    Article  Google Scholar 

  19. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  20. Harris PJF (2009) Carbon nanotube science. Cambridge University Press, Cambridge

    Book  Google Scholar 

  21. Harris PJF, Tsang SC, Claridge JB, Green MLH (1994) J Chem Soc, Faraday Trans 90:2799

    Article  CAS  Google Scholar 

  22. Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga K, Kokai F, Takahashi K (1999) Chem Phys Lett 309:165

    Article  CAS  Google Scholar 

  23. Harris PJF, Burian A, Duber S (2000) Philos Mag Lett 80:381

    Article  CAS  Google Scholar 

  24. Harris PJF (2003) In: Radovic LR (ed) Chemistry and physics of carbon, vol 28. Dekker, New York, p 1

    Google Scholar 

  25. Harris PJF (2004) Philos Mag 84:3159

    Article  CAS  Google Scholar 

  26. Harris PJF (2005) Crit Rev Solid State Mater Sci 30:235

    Article  CAS  Google Scholar 

  27. Iijima S, Ichihashi T, Ando Y (1992) Nature 356:776

    Article  CAS  Google Scholar 

  28. Erni R (2010) Aberration-corrected imaging in transmission electron microscopy: an introduction. Imperial College Press, London

    Book  Google Scholar 

  29. Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S (2004) Nature 430:870

    Article  CAS  Google Scholar 

  30. Meyer JC, Kisielowski C, Erni R, Rossell MD, Crommie MF, Zettl A (2008) Nano Lett 8:3582

    Article  CAS  Google Scholar 

  31. Harris PJF, Liu Z, Suenaga K (2008) J Phys: Condens Matter 20:362201

    Article  Google Scholar 

  32. Zhang Z, Brydson R, Aslam Z, Reddy S, Brown A, Westwood A, Rand B (2011) Carbon 49:5049

    Article  CAS  Google Scholar 

  33. El-Barbary AA, Trasobares S, Ewels CP, Stephan O, Okotrub AV, Bulusheva LG, Fall CJ, Heggie MI (2006) J Phys: Conf Ser 26:149

    Article  Google Scholar 

  34. Burian A, Dore JC (2000) Acta Phys Pol, A 98:457

    CAS  Google Scholar 

  35. Burian A, Daniel P, Duber S, Dore JC (2001) Philos Mag B 81:525

    Article  CAS  Google Scholar 

  36. Hawelek L, Koloczek J, Brodka A, Dore JC, Honkimaki V, Burian A (2007) Philos Mag 87:4973

    Article  CAS  Google Scholar 

  37. Hawelek L, Brodka A, Dore JC, Honkimaki V, Burian A (2008) Diam Relat Mater 17:1633

    Article  CAS  Google Scholar 

  38. Acharya M, Strano MS, Mathews JP, Billinge JL, Petkov V, Subramoney S, Foley HC (1999) Philos Mag B 79:1499

    Article  CAS  Google Scholar 

  39. Kumar A, Lobo RF, Wagner NJ (2005) Carbon 43:3099

    Article  CAS  Google Scholar 

  40. Shi YF (2008) J Chem Phys 128:234707

    Article  Google Scholar 

  41. Powles RC, Marks NA, Lau DWM (2009) Phys Rev B 79:075430

    Article  Google Scholar 

  42. Terzyk AP, Furmaniak S, Gauden PA, Harris PJF, Włoch J, Kowalczyk P (2007) J Phys: Condens Matter 19:406208

    Article  Google Scholar 

  43. Terzyk AP, Furmaniak S, Harris PJF, Gauden PA, Włoch J, Kowalczyk P, Rychlicki G (2007) Phys Chem Chem Phys 9:5919

    Article  CAS  Google Scholar 

  44. Terzyk AP, Furmaniak S, Gauden PA, Harris PJF, Włoch J (2008) J Phys: Condens Matter 20:385212

    Article  Google Scholar 

  45. Furmaniak S, Terzyk AP, Gauden PA, Kowalczyk P, Harris PJF (2009) J Phys: Condens Matter 21:315005

    Article  Google Scholar 

  46. Furmaniak S, Terzyk AP, Gauden PA, Harris PJF, Kowalczyk P (2010) J Phys: Condens Matter 22:085003

    Article  Google Scholar 

  47. Terzyk AP, Gauden PA, Furmaniak S, Wesołowski RP, Harris PJF (2010) Phys Chem Chem Phys 12:812

    Article  CAS  Google Scholar 

  48. Gauden PA, Terzyk AP, Furmaniak S, Harris PJF, Kowalczyk P (2010) Appl Surf Sci 256:5204

    Article  CAS  Google Scholar 

  49. Furmaniak S, Terzyk AP, Gauden PA, Kowalczyk P, Harris PJF (2011) J Phys: Condens Matter 23:395005

    Article  Google Scholar 

  50. Bhattacharya S, Gubbins KE (2006) Langmuir 22:7726

    Article  CAS  Google Scholar 

  51. Yan QL, de Pablo JJ (1999) J Chem Phys 111:9509

    Article  CAS  Google Scholar 

  52. Kruk M, Jaroniec M, Gadkaree KP (1999) Langmuir 15:1442

    Article  CAS  Google Scholar 

  53. Horvath G, Kawazoe K (1983) J Chem Eng Jpn 16:470

    Article  CAS  Google Scholar 

  54. Dubinin MM, Radushkevich LV (1947) Dokl Akad Nauk SSSR 55:327

    CAS  Google Scholar 

  55. Dubinin MM, Astakhov VA (1971) Izv Akad Nauk SSSR Seriya Khimicheskaya 1:5

    Google Scholar 

  56. Izotova TI, Dubinin MM (1965) Zh Fizicheskoi Khimii 39:2796

    CAS  Google Scholar 

  57. McEnaney B, Mays TJ, Chen XS (1998) Fuel 77:557

    Article  CAS  Google Scholar 

  58. Thomson KT, Gubbins KE (2000) Langmuir 16:5761

    Article  CAS  Google Scholar 

  59. Biggs MJ, Buts A, Williamson D (2004) Langmuir 20:7123

    Article  CAS  Google Scholar 

  60. Do DD, Do HD (2006) J Phys Chem B 110:17531

    Article  CAS  Google Scholar 

  61. Palmer JC, Moore JD, Brennan JK, Gubbins KE (2011) J Phys Chem Lett 2:165

    Article  CAS  Google Scholar 

  62. Kashihara S, Otani S, Orikasa H, Hoshikawa Y, Ozaki J, Kyotani T (2012) Carbon 50:3310

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank Artur Terzyk and Kazu Suenaga for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. F. Harris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, P.J.F. Fullerene-like models for microporous carbon. J Mater Sci 48, 565–577 (2013). https://doi.org/10.1007/s10853-012-6788-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6788-1

Keywords

Navigation