Skip to main content

Advertisement

Log in

Mechanical energy dissipation using carbon fiber polymer–matrix structural composites with filler incorporation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Continuous carbon fiber composites with enhanced mechanical energy dissipation (vibration damping) under flexure are provided by incorporation of fillers between the laminae. Exfoliated graphite (EG) as a sole filler is more effective than carbon nanotube (SWCNT/MWCNT), halloysite nanotube (HNT), or nanoclay as sole fillers in enhancing the loss tangent, if the curing pressure is 2.0 (not 0.5) MPa. The MWCNT, SiC whisker, and HNT as sole fillers are effective for increasing the storage modulus. The combined use of a storage modulus-enhancing filler (CNT, SiC whisker, or HNT) and a loss tangent-enhancing filler (EG or nanoclay) gives the best performance. With EG, HNT, and 2.0-MPa curing, the loss modulus is increased by 110%, while the flexural strength is decreased by 14% and the flexural modulus is not affected. With nanoclay, HNT, and 0.5-MPa curing, the loss modulus is increased by 96%, while the flexural strength and modulus are essentially not affected. The filler incorporation is more effective for crossply than unidirectional composites. The highest fraction of mechanical energy dissipated is 11%. The loss tangent enhancement is primarily contributed by the innermost interlaminar interfaces, indicating shear deformation dominance in damping. The filler incorporation increases the interlaminar interface thickness, which remains below ~10 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Benchekchou B, Coni M, Howarth VC, White RG (1998) Composites B 29B:809

    Article  CAS  Google Scholar 

  2. Pan L, Zhang B (2009) J Mater Sci Technol 25(4):543

    CAS  Google Scholar 

  3. Robinson MJ, Kosmatka JB (2006) J Compos Mater 40(23):2157

    Article  CAS  Google Scholar 

  4. Segiet M, Chung DDL (2000) Compos Interfaces 7(4):257

    Article  CAS  Google Scholar 

  5. Gibson RF, Chen Y, Zhao H (2001) ASME 123:309

    Article  CAS  Google Scholar 

  6. Fujimoto J, Tamura T, Todome K, Tanimoto T (1993) Reinf Plast Compos 12(7):738

    Article  CAS  Google Scholar 

  7. Botelho EC, Campos AN, de Barros E, Pardini LC, Rezende MC (2006) Composites B 37:255

    Article  Google Scholar 

  8. Chang C, Gu H, Liang F, Gou J, Sun L, Song G (2010) J Adv Mater 43(1):22

    CAS  Google Scholar 

  9. Zhang C, Sheng JF, Ma CA (2005) Chin Chem Lett 16(11):1527

    CAS  Google Scholar 

  10. Tanimoto T (2002) Jpn J Appl Phys 41:7166

    Article  CAS  Google Scholar 

  11. Tian S, Wang X (2008) J Mater Sci 43:4979. doi:10.1007/s10853-008-2734-7

    Article  CAS  Google Scholar 

  12. Zhu J, Imam A, Crane R, Lozano K, Khabashesku VN, Barrera EV (2007) Compos Sci Technol 67:1509

    Article  CAS  Google Scholar 

  13. Godara A, Gorbatikh L, Kalinka G, Warrier A, Rochez O, Mezzo L, Luizi F, van Vuure AW, Lomov SVI (2010) Compos Sci Technol 70:1346

    Article  CAS  Google Scholar 

  14. Gojny FH, Wichmann MHG, Fiedler B, Bauhofer W, Schulte K (2005) Composites A 36:1525

    Article  Google Scholar 

  15. Grimmer CS, Dharan CKH (2008) J Mater Sci 43:4487. doi:10.1007/s10853-008-2651-9

    Article  CAS  Google Scholar 

  16. Grimmer CS, Dharan CKH (2010) Compos Sci Technol 70:901

    Article  CAS  Google Scholar 

  17. Rausch J, Mader E (2010) Compos Sci Technol 70(2010):1589

    Article  CAS  Google Scholar 

  18. Zhang J, Zhuang R, Liu J, Mader E, Heinrich G, Gao S (2010) Carbon 48:2273

    Article  CAS  Google Scholar 

  19. Thostenson ET, Gangloff JJ Jr, Li C, Byun J (2009) Appl Phys Lett 95:073111

    Article  Google Scholar 

  20. Sureeyatanapas P, Young RJ (2009) Compos Sci Technol 69:1547

    Article  CAS  Google Scholar 

  21. Gao L, Thostenson ET, Zhang Z, Chou T (2009) Adv Funct Mater 19:123

    Article  CAS  Google Scholar 

  22. Alexopoulos ND, Bartholome C, Poulin P, Marioli-Riga Z (2010) Compos Sci Technol 70:260

    Article  CAS  Google Scholar 

  23. Lee OH, Kim S, Lim Y (2011) J Magn Magn Mater 323:587

    Article  CAS  Google Scholar 

  24. Cho J, Daniel IM (2008) Scr Mater 58:533

    Article  CAS  Google Scholar 

  25. Bekyarova E, Thostenson ET, Yu A, Kim H, Gao J, Tang J, Hahn HT, Choi T, Itkis ME, Haddon RC (2007) Langmuir 23:3970

    Article  CAS  Google Scholar 

  26. Zhang F, Wang R, He X, Wang C, Ren L (2009) J Mater Sci 44:3574. doi:10.1007/s10853-009-3484-x

    Article  CAS  Google Scholar 

  27. Cho J, Daniel IM, Dikin DA (2008) In: 25th Technical conference of the American Society for Composites, p 89/1

  28. Kim M, Park Y, Okoli OI, Zhang C (2009) Compos Sci Technol 69:335

    Article  CAS  Google Scholar 

  29. Thostenson ET, Li WZ, Wang DZ, Ren ZF, Chou TW (2002) J Appl Phys 91(9):6034

    Article  CAS  Google Scholar 

  30. Kar KK, Rahaman A, Agnihotri P, Sathiyamoorthy D (2009) Fuller Nanotub Carbon Nanostruct 17(2009):209

    Article  CAS  Google Scholar 

  31. Agnihotri P, Basu S, Kar KK (2011) Carbon 49:3098

    Article  CAS  Google Scholar 

  32. Ye Y, Chen H, Wu J, Chan CM (2011) Composites B 42(8):2145

  33. Ye Y, Chen H, Wu J, Chan CM (2011) Compos Sci Technol 71:717

    Article  CAS  Google Scholar 

  34. Chowdhury FH, Hosur MV, Jeelani S (2007) J Mater Sci 42:2690. doi:10.1007/s10853-006-1370-3

    Article  CAS  Google Scholar 

  35. Timmerman JF, Hayes BS, Seferis JC (2002) Compos Sci Technol 62:1249

    Article  CAS  Google Scholar 

  36. Hussain M, Nakahira A, Niihara K (1996) Mater Lett 26:185

    Article  CAS  Google Scholar 

  37. Asi O (2009) J Reinf Plast Compos 28(23):2861

    Article  CAS  Google Scholar 

  38. Uddin MF, Sun CT (2008) Int SAMPE Symp Exhib 53: 354/1–354/11

  39. Han S, Lin JT, Aoyagi Y, Chung DDL (2008) Carbon 46(7):1060

    Article  CAS  Google Scholar 

  40. Zhou Y, Pervin F, Rangari VK, Jeelani S (2006) Mater Sci Eng A 426:221

    Article  Google Scholar 

  41. Zhou Y, Pervin F, Jeelani S, Mallick PK (2008) J Mater Process Technol 198:445

    Article  CAS  Google Scholar 

  42. Hudnut SW, Chung DDL (1995) Carbon 33(11):1627

    Article  CAS  Google Scholar 

  43. Lin C, Chung DDL (2008) J Electron Mater 37(11):1698

    Article  CAS  Google Scholar 

  44. Huertas FJ, Fiore S, Linares J (2004) Clay Miner 39(4):423

    Article  CAS  Google Scholar 

  45. Muthusamy S, Wang S, Chung DDL (2010) Carbon 48(5):1457

    Article  CAS  Google Scholar 

  46. Luo X, Chung DDL (2000) Carbon 38:1510

    Article  CAS  Google Scholar 

  47. Fu W, Chung DDL (2001) Polym Polym Compos 9(6):423

    CAS  Google Scholar 

  48. Fu X, Chung DDL (1996) Cem Concr Res 26:69

    Article  CAS  Google Scholar 

  49. Fu X, Li X, Chung DDL (1998) J Mater Sci 33:3601. doi:10.1023/A:1004603312273

    Article  CAS  Google Scholar 

  50. Xu Y, Chung DDL (2000) ACI Mater J 97(3):333

    CAS  Google Scholar 

  51. Wen S, Chung DDL (2000) Cem Concr Res 30(2):327

    Article  CAS  Google Scholar 

  52. Swaminathan G, Shivakumar K (2009) J Reinf Plastics Compos 28(8):979

    Article  CAS  Google Scholar 

  53. Malkin AY, Isayev, AI (2006) Rheology—concepts, methods, and applications, ChemTec, Toronto, p 47

  54. Ye Y, Chen H, Wu J, Ye L (2007) Polymer 48:6426

    Article  CAS  Google Scholar 

  55. Liu M, Guo B, Du M, Lei Y, Jia D (2008) J Polym Res 15:205

    Article  CAS  Google Scholar 

  56. Guimaraes L, Enyashin AN, Seifert G, Duarte HA (2010) J Phys Chem C 114:11358

    Article  CAS  Google Scholar 

  57. Chen B, Evans JRG (2006) Scr Mater 54:1581

    Article  CAS  Google Scholar 

  58. Botelho EC, Pardini LC, Rezende MC (2007) J Appl Polym Sci. doi:10.1002/app.26834:3143-3148

  59. Chen P, Chung DDL (2012) Carbon 50:283

    Article  CAS  Google Scholar 

  60. Chung DDL (2001) J Mater Sci 36(24):5733. doi:10.1023/A:1012999616049

    Article  CAS  Google Scholar 

  61. Ledbetter HM, Lei M, Austin MW (1986) J Appl Phys 59(6):1972

    Article  CAS  Google Scholar 

  62. Ledbetter H, Lei M (1994) J Appl Phys 76(5):3212

    Article  CAS  Google Scholar 

  63. Chua PS (1987) SAMPE Q 18(3):10

    CAS  Google Scholar 

  64. Khan AS, Phillips MJ, Tanner KE, Wong FS (2008) Dental Mater 24:1534

    Article  CAS  Google Scholar 

  65. Sarkhel G, Choudhury A (2008) J Appl Polym Sci 108:3442

    Article  CAS  Google Scholar 

  66. Senthilvelan S, Gnanamoorthy R (2006) Polym Testing 25:56

    Article  CAS  Google Scholar 

  67. Goyanes SN, Konig PG, Marconi JD (2003) J Appl Polym Sci 88:883

    Article  CAS  Google Scholar 

  68. Jenkins MJ, Hine PJ, Hay JN, Ward IM (2006) J Appl Polym Sci 99:2789

    Article  CAS  Google Scholar 

  69. Babkina NV, Lipatov YS, Alekseeva TT (2006) Mech Compos Mater 42(4):385

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. L. Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, S., Chung, D.D.L. Mechanical energy dissipation using carbon fiber polymer–matrix structural composites with filler incorporation. J Mater Sci 47, 2434–2453 (2012). https://doi.org/10.1007/s10853-011-6066-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6066-7

Keywords

Navigation