Skip to main content
Log in

Micromechanical origin of angle of repose in granular materials

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We present in this paper a numerical study of sandpile formation and angle of repose by considering the effect of particle shape. We analyze the micromechanical responses of sandpiles, which are crucial to the exploration of origin of angle of repose. The results show that the principal anisotropy directions of contact orientations for the left and right parts of sandpiles deviate increasingly away from the vertical direction as the particle shape becomes more irregular, and that the summation of their deviation angle \(\Delta \phi _n\) relative to the vertical direction with angle of repose \(\alpha \), is approximately a constant regardless of the effect of particle shape. We find that the principal anisotropy directions of particle orientations for the left and right parts of sandpiles rotate as the irregularity of particle shape varies, and tend to reach a compromise state and to lie in the common horizontal direction at a characteristic aspect ratio AR = 0.6. We reveal that the mobilization of arching effect depends primarily on the inclined propagation of strong force chains. We also establish a relationship between the direction where the most intense arching phenomenon takes place and the principal anisotropy directions characterizing the distribution of microstructures and inter-particle force network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Brockbank, B., Huntley, J.M., Ball, R.C.: Contact force distribution in beneath a three-dimensional granular pile. J. Phys. II Fr. 7, 1521–1532 (1997)

    Google Scholar 

  2. Vanel, L., Howell, D.W., Clark, D., Behringer, R.P., Clément, E.: Memories in sand: experimental tests of construction history on stress distributions under sandpiles. Phys. Rev. E. 60, R5040–R5043 (1999)

    Article  ADS  Google Scholar 

  3. Mueggenburg, N.W., Jaeger, H.M., Nagel, S.R.: Stress transmission through three-dimensional ordered granular arrays. Phys. Rev. E. 66, 031304 (2002)

    Article  ADS  Google Scholar 

  4. Atman, A.P.F., Brunet, P., Geng, J., Reydellet, G., Claudin, P., Behringer, R.P., Clément, E.: From the stress response function (back) to the sand pile “dip”. Eur. Phys. J. E 13, 93–100 (2005)

    Article  Google Scholar 

  5. Liu, Y.Y.: Arching effect in confined granular materials. Ph.D. Dissertation, Department of Civil Engineering, The University of Hong Kong, Hong Kong (2010)

  6. Geng, J., Longhi, E., Behringer, R.P., Howell, D.W.: Memory in two-dimensional heap experiments. Phys. Rev. E 64, 060301 (2001)

    Article  ADS  Google Scholar 

  7. Zuiguel, L., Mullin, T., Rotter, J.M.: The effect of particle shape on the stress dip under a sandpile. Phys. Rev. Lett. 98, 028001 (2007)

    Article  ADS  Google Scholar 

  8. Zuiguel, L., Mullin, T.: The role of particle shape on the stress distribution in a sandpile. Proc. R. Soc. A 464, 99–116 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. Zhang, L., Cai, S., Hu, Z., Zhang, J.: A comparison between bridges and force-chains in photoelastic disk packing. Soft Matter 10, 109–114 (2014)

    Article  ADS  Google Scholar 

  10. Bouchaud, J.P., Claudin, P., Clément, E., Otto, M., Reydellet, G.: The stress response function in granular materials. C. R. Phys. 3, 141–151 (2002)

    Article  ADS  Google Scholar 

  11. Liu, C.H., Nagel, S.R., Schecter, D.A., Coppersmith, S.N., Majumda, S., Narayan, O., Witten, T.A.: Force fluctuation in beads packs. Science 269, 513–515 (1995)

    Article  ADS  Google Scholar 

  12. Coppersmith, S.N., Liu, C.H., Majumda, S., Narayan, O., Witten, T.A.: Model for force fluctuation in bead packs. Phys. Rev. E. 53, 4673–4685 (1996)

    Article  ADS  Google Scholar 

  13. Howell, D., Behringer, R.P., Veje, C.: Stress fluctuations in a 2D granular Couette experiment: a continuous transition. Phys. Rev. Lett. 82, 9241–9244 (1999)

    Article  Google Scholar 

  14. Veje, C., Howell, D., Behringer, R.P.: Kinematics of a two-dimensional granular Couette experiment at the transition to shearing. Phys. Rev. E. 59, 739–745 (1999)

    Article  ADS  Google Scholar 

  15. Bouchaud, J.P., Cates, M.E., Claudin, P.: Stress distribution in granular media and nonlinear wave equation. J. Phys. I Fr. 5, 639–656 (1995)

    Article  Google Scholar 

  16. Wittmer, J.P., Claudin, P., Cates, M.E., Bouchaud, J.P.: An explanation for the central stress minimum in sand piles. Nature 382, 336–338 (1996)

    Article  ADS  Google Scholar 

  17. Wittmer, J.P., Cates, M.E., Claudin, P.: Stress propagation and arching in sandpiles. J. Phys. I Fr. 7, 39–80 (1997)

    Article  Google Scholar 

  18. Alonso, J.J., Hovi, J.P., Herrmann, H.J.: Lattice model for the calculation of the angle repose from microscopic grain properties. Phys. Rev. E. 58, 672–680 (1998)

    Article  ADS  Google Scholar 

  19. Herrmann, H.J.: Statistical models for granular materials. Phys. A 263, 51–62 (1999)

    Article  Google Scholar 

  20. Hill, J.M., Cox, G.M.: The force distribution at the base ofsand-piles. Developments in Theoretical Geomechanics, The John Booker Memorial Symposium, 43–61 (2000)

  21. Pipatpongsa, T., Heng, S., Lizuka, A., Ohta, H.: Statics of loose triangular embankment under Nadai’s sand hill analogy. J. Mech. Phys. Solids 58, 1506–1523 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Aranson, I.S., Tsimring, L.S.: Patterns and collective behavior in granular media: theoretical concepts. Rev. Mod. Phys. 78, 641–692 (2006)

    Article  ADS  Google Scholar 

  23. Duran, J.: Sand, Powders, and Grains: An Introduction to the Physics of Granular Materials. Springer, New York (1999)

    Google Scholar 

  24. Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996)

    Article  ADS  Google Scholar 

  25. Lee, J., Herrmann, H.J.: Angle of repose and angle of marginal stability: molecular dynamics of granular particles. J. Phys. A: Math. Gen. 26, 373–383 (1993)

    Article  ADS  Google Scholar 

  26. Luding, S.: Stress distribution in static two-dimensional granular model media in the absence of friction. Phys. Rev. E 55, 4720–4729 (1997)

    Article  ADS  Google Scholar 

  27. Zhou, Y.C., Xu, B.H., Yu, A.B., Zulli, P.: Numerical investigation of the angle of repose of monosized spheres. Phys. Rev. E 64, 021301 (2001)

    Article  ADS  Google Scholar 

  28. Goldenberg, C., Goldhirsch, I.: Friction enhances elasticity in granular solids. Nature 435, 188–191 (2005)

    Article  ADS  Google Scholar 

  29. Liffman, K., Nguyen, M., Metcalfe, G., Cleary, P.: Forces in piles of granular materials: an analytic and 3D DEM study. Granul. Matter 3, 165–176 (2001)

    Article  Google Scholar 

  30. Li, Y., Xu, Y., Thornton, C.: A comparison of discrete element method simulations and experiments for ’sandpile’ composed of spherical particles. Powder Technol. 160, 219–228 (2005)

    Article  Google Scholar 

  31. Matuttis, H.G.: Simulation of the pressure distribution under a two-dimensional heap of polygonal particles. Granul. Matter 1, 83–91 (1998)

    Article  Google Scholar 

  32. Matuttis, H.G., Luding, S., Herrmann, H.J.: Discrete element simulations of dense packing and heaps made of spherical and non-spherical particles. Powder Technol. 109, 278–292 (2000)

    Article  Google Scholar 

  33. Zhou, C., Ooi, J.Y.: Numerical investigation of progressive development of granular pile with spherical and non-spherical particles. Mech. Mater. 41, 707–714 (2009)

    Article  Google Scholar 

  34. Zhou, Z.Y., Zou, R.P., Pinson, D., Yu, A.B.: Angle of repose and stress distribution of sandpiles formed with ellipsoidal particles. Granul. Matter 16, 695–709 (2014)

    Article  ADS  Google Scholar 

  35. PFC2D: User’s manual for PFC2D. Itasca Consulting Group Inc, Minneapolis (2005)

  36. Li, X., Yu, H.-S.: Numerical investigation of granular material behaviour under rotational shear. Géotechnique 60, 381–394 (2010)

    Article  Google Scholar 

  37. Yang, Z.X., Yang, J., Wang, L.Z.: Micro-scale modeling of anisotropy effects on undrained behavior of granular soil. Granul. Matter 15, 557–572 (2013)

  38. Dai, B.B., Yang, J., Luo, X.D.: A numerical analysis of the shear behavior of granular soil with fines. Particuology 21, 160–172 (2015)

    Article  Google Scholar 

  39. Cavarretta, I., Coop, M., O’Sullivan, C.: The influence of particle characteristics on the behaviour of coarse grained soils. Géotechnique 60, 413–423 (2010)

    Article  Google Scholar 

  40. Yang, J., Wei, L.M.: Collapse of loose sand with the addition of fines: the role of particle shape. Géotechnique 62, 1111–1125 (2012)

    Article  Google Scholar 

  41. Yang, J., Luo, X.D.: Exploring the relationship between critical state and particle shape for granular materials. J. Mech. Phys. Solids 84, 196–213 (2015)

    Article  ADS  Google Scholar 

  42. Yang, Y., Wang, J.F., Cheng, Y.M.: Quantified evaluation of particle shape effects from micro-to-macro for non-convex grains. Particuology 25, 23–35 (2015)

    Article  Google Scholar 

  43. Wadell, H.: Volume, shape, and roundness of rock particles. J. Geol. 40, 443–451 (1932)

    Article  ADS  Google Scholar 

  44. Wadell, H.: Volume, shape, and roundness of quartz particles. J. Geol. 43, 250–280 (1935)

    Article  ADS  Google Scholar 

  45. Robinson, D.A., Friedman, S.P.: Observations of the effects of particle shape and particle size distribution on avalanching of granular media. Phys. A 311, 97–110 (2002)

    Article  Google Scholar 

  46. Kanatani, K.: Distribution of directional data and fabric tensors. Int. J. Eng. Sci. 22, 149–164 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  47. Satake, M.: Fabric tensor in granular materials. In: IUTAM Symposium onDeformation and Failure of Granular Materials, Delft, 63-68 (1982)

  48. Topic, N., Schaller, F.M., Schröder-Turk, G.E., Pöschel, T.: The microscopic structure of mono-disperse granular heaps and sediments of particles on inclined surfaces. Soft Matter 12, 3184–3188 (2016)

    Article  ADS  Google Scholar 

  49. Rothenburg, L., Bathurst, R.J.: Analytical study of induced anisotropy in idealized granular materials. Géotechnique 39, 601–614 (1989)

    Article  Google Scholar 

  50. Oda, M.: Fabric tensor and its geometrical meaning. In: Oda, M., Iwashita, K. (eds.) Mechanics of Granular Materials: An introduction, pp. 27–35. A.A. Balkema, Rotterdam (1999)

Download references

Acknowledgements

We thank the financial support provided by the National Natural Science Foundation of China (No. 51209237; 51428901) and the Fundamental Research Funds for the Central Universities (No. 13lgpy05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bei-Bing Dai.

Ethics declarations

Conflict of interest

We here declare that we have no financial and personal relationships with other people or organizations which can inappropriately influence the work presented in this manuscript, and that there is no professional or other personal interest of any nature or kind in any product, service and/or company which could be construed as influencing the position presented in, or the review of, this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, BB., Yang, J. & Zhou, CY. Micromechanical origin of angle of repose in granular materials. Granular Matter 19, 24 (2017). https://doi.org/10.1007/s10035-017-0709-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-017-0709-6

Keywords

Navigation