Skip to main content
Log in

Cu isotope fractionation during reduction processes in aqueous systems: evidences from electrochemical deposition

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract


Redox processes are ubiquitous in Earth science, and redox transitions often lead to large fractionations of the stable isotopes of many transition metals such as copper. To get insights into the mechanisms of isotope fractionations induced by electrochemical processes, we examine the behavior of copper isotopes during the reduction reaction Cu2+ + 2e = Cu0. All experiments have been conducted by applying a controlled current between the working electrode and the auxiliary electrode, i.e., the galvanostatic electrodeposition technique, in aqueous CuSO4 solutions. Controlling parameters were tested by varying electrolyte concentration (0.01–1 mol kg−1), stirring speed (0–500 rpm), current (0.1–0.5 A), time (35–600 s), and temperature (5–80 °C). In all cases, the plated Cu metal is enriched in the light isotope (63Cu) with respect to the solution. At room temperature, the Cu isotopic fractionation between the electroplated Cu and electrolyte is found to increase with electrolyte concentration and stirring speed, and to decrease with current and run duration. These trends can be interpreted by three competing processes: copper transport in the solution, kinetics of electrochemical reduction of copper ions and surface diffusion at the electrode, i.e., transport becomes important at low copper concentration, low stirring speed, high currents and large amount of copper precipitation. Copper isotope fractionation has a maximum near 35 °C, decreasing both towards higher and lower temperatures. In the temperature range of 35–80 °C, the dependence of temperature on isotope fractionation can be described by

$$ \Delta^{65} {\text{Cu}}_{{{\text{Cu}}\left( 0 \right) - {\text{Cu}}({\text{II}}){\text{aq}}}} = - \left( {0.27 \pm 0.04} \right) \times 10^{6} T^{ - 2} + \left( {0.16 \pm 0.34} \right), $$

where ∆65CuCu(0)–Cu(II)aq (‰) represents the copper isotopic composition differences between the product (electroplated copper) and the reactant (electrolyte solution, CuSO4(aq)), and T is the temperature in K. At low temperature (down to 5 °C), a noticeable deviation from this trend suggests a change in the controlling mechanism, i.e., transport in the solution becomes important. Our findings are best explained by a two-step reduction process including reduction from Cu(II) to Cu(I) and a subsequent reduction of Cu(I) to Cu(0). The good agreement of our high-temperature data with the results from Ehrlich et al. (2004), who used a different experimental approach to precipitate Cu(I) mineral from CuSO4 solution, implies that transformation of Cu(II) to Cu(I) dominates the isotope fractionation observed during electrochemical reduction of Cu(II) to Cu(0). These findings support that copper isotopes can be used as effective tracers of redox processes. They may have implications to processes in hydrothermal systems and the formation of ore deposits, e.g., volcanic-hosted massive sulfides, as well as to processes in near surface aquatic environment and related supergene processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A :

Surface area of an electrode (cm2)

\( C_{{{\text{Cu}}^{2 + } }}^{*} \) :

Concentration of Cu(II) in the bulk solution (mol cm−3)

d :

Thickness of the electrode (cm)

\( D_{{{\text{Cu}}^{2 + } }} \) :

Diffusion coefficient of Cu(II) (cm2 s−1)

F :

Faraday constant (96,485 C mol−1)

∆G :

Activation energy

i diffusion limited :

Current flowing under diffusion control (A)

k :

Electrochemical reaction rate (mol s−1 cm−2)

m theoretical :

The estimated mass of the substance liberated at an electrode (g)

m real :

The mass of Cu deposits on an electrode (g)

m O :

Mass transfer coefficient (cm s−1)

M :

The molar mass of copper (g mol−1)

n :

Stoichiometric number of electrons transferred in reaction

R :

Gas constant (8.3145 J K−1 mol−1)

T :

Temperature (K)

t :

Run duration (s)

x i :

Mole fraction of species i in electroplated deposits

z :

Valence number

β :

Reduced partition function ratios

γ :

Coefficient to interpret the relation of diffusion coefficients in two isotopologue species

η :

Overpotential (V)

δ 65Cu:

Cu isotope composition of certain species (‰)

Δ65Cu:

Cu isotope fractionation between different species (‰)

References

  • Amira S, Spångberg D, Hermansson K (2005) Distorted five-fold coordination of Cu2+ (aq) from a Car-Parrinello molecular dynamics simulation. Phys Chem Chem Phys 7:2874–2880

    Article  Google Scholar 

  • Anbar A, Jarzecki A, Spiro T (2005) Theoretical investigation of iron isotope fractionation between Fe(H2O)6 3+ and Fe(H2O)6 2+: implications for iron stable isotope geochemistry. Geochim Cosmochim Acta 69:825–837

    Article  Google Scholar 

  • Andersen JE, Bech-Nielsen G, Møller P (1994) Bulk crystalline copper electrodeposited on polycrystalline gold surfaces observed by in situ scanning tunnelling microscopy. Surf Coat Technol 70:87–95

    Article  Google Scholar 

  • Asael D, Matthews A, Bar-Matthews M, Halicz L (2007) Copper isotope fractionation in sedimentary copper mineralization (Timna Valley, Israel). Chem Geol 243:238–254

    Article  Google Scholar 

  • Asael D, Matthews A, Bar-Matthews M, Harlavan Y, Segal I (2012a) Tracking redox controls and sources of sedimentary mineralization using copper and lead isotopes. Chem Geol 310:23–35

    Article  Google Scholar 

  • Asael D, Matthews A, Bar-Matthews M, Harlavan Y, Segal I (2012b) Tracking redox controls and sources of sedimentary mineralization using copper and lead isotopes. Chem Geol 310–311:23–35

    Article  Google Scholar 

  • Baggio SB, Hartmann LA, Lazarov M, Massonne H-J, Opitz J, Theye T, Viefhaus T (2017) Origin of native copper in the Paraná volcanic province, Brazil, integrating Cu stable isotopes in a multi-analytical approach. Mineralium Deposita 53:1–18

    Google Scholar 

  • Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  • Barrat J-A, Zanda B, Moynier F, Bollinger C, Liorzou C, Bayon G (2012) Geochemistry of CI chondrites: major and trace elements, and Cu and Zn isotopes. Geochim Cosmochim Acta 83:79–92

    Article  Google Scholar 

  • Benfatto M, d’Angelo P, Della Longa S, Pavel N (2002) Evidence of distorted five-fold coordination of the Cu2+ aqua ion from an x-ray-absorption spectroscopy quantitative analysis. Phys Rev B 65:174205

    Article  Google Scholar 

  • Bigalke M, Weyer S, Kobza J, Wilcke W (2010) Stable Cu and Zn isotope ratios as tracers of sources and transport of Cu and Zn in contaminated soil. Geochim Cosmochim Acta 74:6801–6813

    Article  Google Scholar 

  • Bigeleisen J, Mayer MG (1947) Calculation of equilibrium constants for isotopic exchange reactions. J Chem Phys 15:261–267

    Article  Google Scholar 

  • Black JR, Umeda G, Dunn B, McDonough WF, Kavner A (2009) Electrochemical isotope effect and lithium isotope separation. J Am Chem Soc 131:9904–9905

    Article  Google Scholar 

  • Black JR, John S, Young ED, Kavner A (2010a) Effect of temperature and mass transport on transition metal isotope fractionation during electroplating. Geochim Cosmochim Acta 74:5187–5201

    Article  Google Scholar 

  • Black JR, Young ED, Kavner A (2010b) Electrochemically controlled iron isotope fractionation. Geochim Cosmochim Acta 74:809–817

    Article  Google Scholar 

  • Black JR, Crawford JA, John S, Kavner A (2011) Redox driven stable isotope fractionation. In: Tratnyek PG, Grundl TJ, Haderlein SB (eds) Aquatic redox chemistry ACS symposium series, vol 1071, Chapter 16., pp 345–359

    Google Scholar 

  • Black JR, John SG, Kavner A (2014) Coupled effects of temperature and mass transport on the isotope fractionation of zinc during electroplating. Geochim Cosmochim Acta 124:272–282

    Article  Google Scholar 

  • Blowes DW, Jambor JL (1990) The pore-water geochemistry and the mineralogy of the vadose zone of sulfide tailings, Waite Amulet, Quebec, Canada. Appl Geochem 5:327–346

    Article  Google Scholar 

  • Bockris JM, Enyo M (1962) Mechanism of electrodeposition and dissolution processes of copper in aqueous solutions. Trans Faraday Soc 58:1187–1202

    Article  Google Scholar 

  • Bockris JM, Kita H (1962) The dependence of charge transfer and surface diffusion rates on the structure and stability of an electrode surface: copper. J Electrochem Soc 109:928–939

    Article  Google Scholar 

  • Bornhorst TJ, Mathur R (2017) Copper isotope constraints on the genesis of the Keweenaw Penisula native copper district, Michigan, USA. Minerals 7(185):1–20

    Google Scholar 

  • Bozzini B, Mele C, D’urzo L (2006) Electrodeposition of Cu from acidic sulphate solutions in the presence of PEG-Part II visible electroreflectance spectroscopy measurements during electrodeposition. J Appl Electrochem 36:87–96

    Article  Google Scholar 

  • Brande PV, Winand R (1992) Nucleation and initial growth of copper electrodeposits under galvanostatic conditions. Surf Coat Technol 52:1–7

    Article  Google Scholar 

  • Brown O, Thirsk H (1965) The rate-determining step in the electro-deposition of copper on copper from aqueous cupric sulphate solutions. Electrochim Acta 10:383–393

    Article  Google Scholar 

  • Budevski E, Staikov G, Lorenz W (2000) Electrocrystallization: nucleation and growth phenomena. Electrochim Acta 45:2559–2574

    Article  Google Scholar 

  • Casas JM, Alvarez F, Cifuentes L (2000) Aqueous speciation of sulfuric acid–cupric sulfate solutions. Chem Eng Sci 55:6223–6234

    Article  Google Scholar 

  • Cifuentes L, Casas JM, Simpson J (2006) Temperature dependence of the speciation of copper and iron in acidic electrolytes. Chem Eng Res Des 84:965–969

    Article  Google Scholar 

  • Cooper HK, Duke MJM, Simonetti A, Chen G (2008) Trace element and Pb isotope provenance analyses of native copper in northwestern North America: results of a recent pilot study using INAA, ICP-MS, and LA-MC-ICP-MS. J Archaeol Sci 35:1732–1747

    Article  Google Scholar 

  • Criss RE (1999) Principles of stable isotope distribution. Oxford University Press

  • de Almeida KJ, Murugan NA, Rinkevicius Z, Hugosson HW, Vahtras O, Ågren H, Cesar A (2009) Conformations, structural transitions and visible near-infrared absorption spectra of four-, five-and six-coordinated Cu (II) aqua complexes. Phys Chem Chem Phys 11:508–519

    Article  Google Scholar 

  • Dekov VM, Rouxel O, Asael D, Hålenius U, Munnik F (2013) Native Cu from the oceanic crust: isotopic insights into native metal origin. Chem Geol 359:136–149

    Article  Google Scholar 

  • Ehrlich S, Butler I, Halicz L, Rickard D, Oldroyd A, Matthews A (2004) Experimental study of the copper isotope fractionation between aqueous Cu (II) and covellite, CuS. Chem Geol 209:259–269

    Article  Google Scholar 

  • Fallon EK, Petersen S, Brooker RA, Scott TB (2017) Oxidative dissolution of hydrothermal mixed-sulphide ore: an assessment of current knowledge in relation to seafloor massive sulphide mining. Ore Geol Rev 86:309–337

    Article  Google Scholar 

  • Fernandez A, Borrok DM (2009) Fractionation of Cu, Fe, and Zn isotopes during the oxidative weathering of sulfide-rich rocks. Chem Geol 264:1–12

    Article  Google Scholar 

  • Frank P, Benfatto M, Szilagyi RK, D’Angelo P, Della Longa S, Hodgson KO (2005) The solution structure of [Cu(aq)]2+ and its implications for rack-induced bonding in blue copper protein active sites. Inorg Chem 44:1922–1933

    Article  Google Scholar 

  • Fritz SJ (1992) Measuring the ratio of aqueous diffusion coefficients between 6Li +Cl and 7Li+Cr by osmometry. Geochim Cosmochim Acta 56:3781–3789

    Article  Google Scholar 

  • Fujii T, Moynier F, Abe M, Nemoto K, Albarède F (2013) Copper isotope fractionation between aqueous compounds relevant to low temperature geochemistry and biology. Geochim Cosmochim Acta 110:29–44

    Article  Google Scholar 

  • Fulton JL, Hoffmann MM, Darab JG (2000a) An X-ray absorption fine structure study of copper (I) chloride coordination structure in water up to 325 C. Chem Phys Lett 330:300–308

    Article  Google Scholar 

  • Fulton JL, Hoffmann MM, Darab JG, Palmer BJ, Stern EA (2000b) Copper (I) and copper (II) coordination structure under hydrothermal conditions at 325 °C: an X-ray absorption fine structure and molecular dynamics study. J Phys Chem A 104:11651–11663

    Article  Google Scholar 

  • Genovese A, Mellini M (2007) Ferrihydrite flocs, native copper nanocrystals and spontaneous remediation in the Fosso dei Noni stream, Tuscany, Italy. Appl Geochem 22:1439–1450

    Article  Google Scholar 

  • Gregory MJ, Mathur R (2017) Understanding copper isotope behavior in the high temperature magmatic-hydrothermal porphyry environment. Geochem Geophys Geosyst 18:4000–4015

    Article  Google Scholar 

  • Grujicic D, Pesic B (2002) Electrodeposition of copper: the nucleation mechanisms. Electrochim Acta 47:2901–2912

    Article  Google Scholar 

  • Guo L, Searson PC (2010) Influence of anion on the kinetics of copper island growth. Nanoscale 2:2431–2435

    Article  Google Scholar 

  • Haest M, Muchez P, Petit JC, Vanhaecke F (2009) Cu isotope ratio variations in the Dikulushi Cu-Ag deposit, DRC: of primary origin or induced by supergene reworking? Econ Geol 104:1055–1064

    Article  Google Scholar 

  • Hai NT, Odermatt J, Grimaudo V, Krämer KW, Fluegel A, Arnold M, Mayer D, Broekmann P (2012) Potential oscillations in galvanostatic Cu electrodeposition: antagonistic and synergistic effects among SPS, chloride, and suppressor additives. J Phys Chem C 116:6913–6924

    Article  Google Scholar 

  • Hinatsu JT, Foulkes FR (1989) Diffusion coefficients for copper (II) in aqueous cupric sulfate-sulfuric acid solutions. J Electrochem Soc 136:125–132

    Article  Google Scholar 

  • Höffler F, Steiger M (2018) Thermodynamic properties of CuSO4 (aq) from 268 to 377 K and phase equilibria in the CuSO4–H2O system. Monatshefte für Chemie-Chemical Monthly 149:369–379

    Article  Google Scholar 

  • Hotlos J, Jaskuła M (1988) Densities and viscosities of CuSO4–H2SO4–H2O solutions. Hydrometallurgy 21:1–7

    Article  Google Scholar 

  • Hu C-C, Wu C-M (2003) Effects of deposition modes on the microstructure of copper deposits from an acidic sulfate bath. Surf Coat Technol 176:75–83

    Article  Google Scholar 

  • Hurlen T, Ottesen G, Staurset A (1978) Kinetics of copper dissolution and deposition in aqueous sulphate solution. Electrochim Acta 23:39–44

    Article  Google Scholar 

  • Ikehata K, Hirata T (2012) Copper isotope characteristics of copper-rich minerals from the Horoman peridotite complex, Hokkaido, northern Japan. Econ Geol 107:1489–1497

    Article  Google Scholar 

  • Ikehata K, Notsu K, Hirata T (2011) Copper isotope characteristics of copper-rich minerals from besshi-type volcanogenic massive sulfide deposits, japan, determined using a femtosecond LA-MC-ICP-MS. Econ Geol 106:307–316

    Article  Google Scholar 

  • Jähne B, Heinz G, Dietrich W (1987) Measurement of the diffusion coefficients of sparingly soluble gases in water. J Geophys Res Ocean 92:10767–10776

    Article  Google Scholar 

  • Justel FJ, Taboada ME, Jimenez YP (2018) Thermodynamic study of the Cu–Na–H–SO4–Cl–HSO4–H2O system for the solubility of copper sulfate in acid seawater at different temperatures. J Mol Liq 249:702–709

    Article  Google Scholar 

  • Kavner A, Bonet F, Shahar A, Simon J, Young E (2005) The isotopic effects of electron transfer: an explanation for Fe isotope fractionation in nature. Geochim Cosmochim Acta 69:2971–2979

    Article  Google Scholar 

  • Kavner A, John S, Sass S, Boyle E (2008) Redox-driven stable isotope fractionation in transition metals: application to Zn electroplating. Geochim Cosmochim Acta 72:1731–1741

    Article  Google Scholar 

  • Kavner A, Shahar A, Black J, Young E (2009) Iron isotope electroplating: diffusion-limited fractionation. Chem Geol 267:131–138

    Article  Google Scholar 

  • Kimball BE, Mathur R, Dohnalkova A, Wall A, Runkel R, Brantley SL (2009) Copper isotope fractionation in acid mine drainage. Geochim Cosmochim Acta 73:1247–1263

    Article  Google Scholar 

  • Kondo K, Akolkar RN, Barkey DP, Yokoi M (2014) Copper electrodeposition for nanofabrication of electronics devices. Springer, New York

    Book  Google Scholar 

  • Koski RA, Munk L, Foster AL, Shanks WC III, Stillings LL (2008) Sulfide oxidation and distribution of metals near abandoned copper mines in coastal environments, Prince William Sound, Alaska, USA. Appl Geochem 23:227–254

    Article  Google Scholar 

  • Kusonwiriyawong C, Bigalke M, Abgottspon F, Lazarov M, Wilcke W (2016) Response of Cu partitioning to flooding: a δ65Cu approach in a carbonatic alluvial soil. Chem Geol 420:69–76

    Article  Google Scholar 

  • Kusonwiriyawong C, Bigalke M, Cornu S, Montagne D, Fekiacova Z, Lazarov M, Wilcke W (2017) Response of copper concentrations and stable isotope ratios to artificial drainage in a French Retisol. Geoderma 300:44–54

    Article  Google Scholar 

  • Larson PB, Maher K, Ramos FC, Chang Z, Gaspar M, Meinert LD (2003) Copper isotope ratios in magmatic and hydrothermal ore-forming environments. Chem Geol 201:337–350

    Article  Google Scholar 

  • Lazarov M, Horn I (2015) Matrix and energy effects during in situ determination of Cu isotope ratios by ultraviolet-femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry. Spectrochim Acta Part B 111:64–73

    Article  Google Scholar 

  • Li W, Jackson SE, Pearson NJ, Graham S (2010) Copper isotopic zonation in the Northparkes porphyry Cu–Au deposit, SE Australia. Geochim Cosmochim Acta 74:4078–4096

    Article  Google Scholar 

  • Liu S-A, Huang J, Liu J, Wörner G, Yang W, Tang Y-J, Chen Y, Tang L, Zheng J, Li S (2015) Copper isotopic composition of the silicate Earth. Earth Planet Sci Lett 427:95–103

    Article  Google Scholar 

  • Luck JM, Ben Othman D, Albarede F (2005) Zn and Cu isotopic variations in chondrites and iron meteorites: early solar nebula reservoirs and parent-body processes. Geochim Cosmochim Acta 69:5351–5363

    Article  Google Scholar 

  • Majidi M, Asadpour-Zeynali K, Hafezi B (2009) Reaction and nucleation mechanisms of copper electrodeposition on disposable pencil graphite electrode. Electrochim Acta 54:1119–1126

    Article  Google Scholar 

  • Mamme MH, Deconinck J, Ustarroz J (2017) Transition between kinetic and diffusion control during the initial stages of electrochemical growth using numerical modelling. Electrochim Acta 258:662–668

    Article  Google Scholar 

  • Maréchal CN, Sheppard SMF (2002) Isotopic fractionation of Cu and Zn between chloride and nitrate solutions and malachite or smithsonite at 30 degrees and 50 degrees C. Geochim Cosmochim, Acta, p 66

    Google Scholar 

  • Maréchal CN, Télouk P, Albarède F (1999) Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem Geol 156:251–273

    Article  Google Scholar 

  • Markl G, Lahaye Y, Schwinn G (2006) Copper isotopes as monitors of redox processes in hydrothermal mineralization. Geochim Cosmochim Acta 70:4215–4228

    Article  Google Scholar 

  • Mathur R, Fantle MS (2015) Copper isotopic perspectives on supergene processes: implications for the global Cu cycle. Elements 11:323–329

    Article  Google Scholar 

  • Mathur R, Ruiz J, Titley S, Liermann L, Buss H, Brantley S (2005) Cu isotopic fractionation in the supergene environment with and without bacteria. Geochim Cosmochim Acta 69:5233–5246

    Article  Google Scholar 

  • Mathur R, Titley S, Barra F, Brantley S, Wilson M, Phillips A, Munizaga F, Maksaev V, Vervoort J, Hart G (2009) Exploration potential of Cu isotope fractionation in porphyry copper deposits. J Geochem Explor 102:1–6

    Article  Google Scholar 

  • Mattsson E, Bockris JM (1959) Galvanostatic studies of the kinetics of deposition and dissolution in the copper + copper sulphate system. Trans Faraday Soc 55:1586–1601

    Article  Google Scholar 

  • Moynier F, Vance D, Fujii T, Savage P (2017) The isotope geochemistry of zinc and copper. Rev Miner Geochem 82:543–600

    Article  Google Scholar 

  • Musinu A, Paschina G, Piccaluga G, Magini M (1983) Coordination of copper (II) in aqueous copper sulfate solution. Inorg Chem 22:1184–1187

    Article  Google Scholar 

  • Nagar M, Radisic A, Strubbe K, Vereecken PM (2016) The effect of the substrate characteristics on the electrochemical nucleation and growth of copper. J Electrochem Soc 163:D3053–D3061

    Article  Google Scholar 

  • Natter H, Hempelmann R (1996) Nanocrystalline copper by pulsed electrodeposition: the effects of organic additives, bath temperature, and pH. J Phys Chem 100:19525–19532

    Article  Google Scholar 

  • O’Neil JR (1986) Theoretical and experimental aspects of isotopic fractionation. Rev Miner 16:1–40

    Google Scholar 

  • Pasquarello A, Petri I, Salmon PS, Parisel O, Car R, Tóth É, Powell DH, Fischer HE, Helm L, Merbach AE (2001) First solvation shell of the Cu (II) aqua ion: evidence for five-fold coordination. Science 291:856–859

    Article  Google Scholar 

  • Pękala M, Asael D, Butler IB, Matthews A, Richard D (2011) Experimental study of Cu isotope fractionation during the reaction of aqueous Cu(II) with Fe(II) sulphides at temperatures between 40 and 200 °C. Chem Geol 289(2011):31–38

    Article  Google Scholar 

  • Pikal MJ (1972) Isotope effect in tracer diffusion. Comparison of the diffusion coefficients of 24Na+ and 22Na+ in aqueous electrolytes. J Phys Chem 76:3038–3040

    Article  Google Scholar 

  • Pinto VM, Hartmann LA, Wildner W (2011) Epigenetic hydrothermal origin of native copper and supergene enrichment in the Vista Alegre district, Paraná basaltic province, southernmost Brazil. Int Geol Rev 53:1163–1179

    Article  Google Scholar 

  • Pokrovski GS, Borisova AY, Harrichoury J-C (2008) The effect of sulfur on vapor–liquid fractionation of metals in hydrothermal systems. Earth Planet Sci Lett 266:345–362

    Article  Google Scholar 

  • Radisic A, Vereecken PM, Hannon JB, Searson PC, Ross FM (2006) Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett 6:238–242

    Article  Google Scholar 

  • Rempel KU, Liebscher A, Meixner A, Romer RL, Heinrich W (2012) An experimental study of the elemental and isotopic fractionation of copper between aqueous vapour and liquid to 450 °C and 400 bar in the CuCl–NaCl–H2O and CuCl–NaHS–NaCl–H2O systems. Geochim Cosmochim Acta 94:199–216

    Article  Google Scholar 

  • Richter FM, Mendybaev RA, Christensen JN, Hutcheon ID, Williams RW, Sturchio NC, Beloso AD Jr (2006) Kinetic isotopic fractionation during diffusion of ionic species in water. Geochim Cosmochim Acta 70:277–289

    Article  Google Scholar 

  • Rodushkin I, Stenberg A, Andrén H, Malinovsky D, Baxter DC (2004) Isotopic fractionation during diffusion of transition metal ions in solution. Anal Chem 76:2148–2151

    Article  Google Scholar 

  • Roebbert Y, Rabe K, Lazarov M, Schuth S, Schippers A, Dold B, Weyer S (2018) Fractionation of Fe and Cu isotopes in acid mine tailings: modification and application of a sequential extraction method. Chem Geol 493:67–79

    Article  Google Scholar 

  • Rouxel O, Fouquet Y, Ludden JN (2004) Copper isotope systematics of the Lucky Strike, Rainbow, and Logatchev sea-floor hydrothermal fields on the Mid-Atlantic Ridge. Econ Geol 99:585–600

    Article  Google Scholar 

  • Schauble EA (2004) Applying stable isotope fractionation theory to new systems. Rev Mineral Geochem 55:65–111

    Article  Google Scholar 

  • Sherman DM (2001) Quantum chemistry and classical simulations of metal complexes in aqueous solutions. Rev Miner Geochem 42:273–317

    Article  Google Scholar 

  • Sherman DM (2013) Equilibrium isotopic fractionation during oxidation-reduction, aqueous complexation and ore-forming processes. Predictions from hybrid density functional theory. Geochim Cosmochim Acta 118(2013):85–97

    Article  Google Scholar 

  • Sikka DB, Petruk W, Nehru CE, Zhang Z (1991) Geochemistry of secondary copper minerals from Proterozoic porphyry copper deposit, Malanjkhand, India. Ore Geol Rev 6:257–290

    Article  Google Scholar 

  • Sillitoe RH (2005) Supergene oxidized and enriched porphyry copper and related deposits. Econ Geol 100:723–768

    Google Scholar 

  • Slaiman Q, Lorenz W (1974) Investigations of the kinetics of Cu/Cu2+ electrode using the galvanostatic double pulse method. Electrochim Acta 19:791–798

    Article  Google Scholar 

  • Takahashi KM, Gross ME (1999) Transport phenomena that control electroplated copper filling of submicron vias and trenches. J Electrochem Soc 146:4499–4503

    Article  Google Scholar 

  • Texier F, Servant L, Bruneel JL, Argoul F (1998) In situ probing of interfacial processes in the electrodeposition of copper by confocal Raman microspectroscopy. J Electroanal Chem 446:189–203

    Article  Google Scholar 

  • Thornber M (1985) Supergene alteration of sulphides: VII. Distribution of elements during the gossan-forming process. Chem Geol 53:279–301

    Article  Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc 562–581

  • Velasco-Vélez JJ, Skorupska K, Frei E, Huang YC, Dong CL, Su BJ, Hsu CJ, Chou HY, Chen JM, Strasser P (2017) The electro-deposition/dissolution of CuSO4 aqueous electrolyte investigated by in situ soft X-ray absorption spectroscopy. J Phys Chem B 122:780–787

    Article  Google Scholar 

  • Venables J, Spiller G, Hanbucken M (1984) Nucleation and growth of thin films. Rep Prog Phys 47:399

    Article  Google Scholar 

  • Vicenzo A, Cavallotti P (2002) Copper electrodeposition from a pH 3 sulfate electrolyte. J Appl Electrochem 32:743–753

    Article  Google Scholar 

  • Webber AP, Roberts S, Murton BJ, Hodgkinson MRS (2015) Geology, sulfide geochemistry and supercritical venting at the Beebe Hydrothermal Vent Field, Cayman Trough. Geochem Geophys Geosyst 16:2661–2678

    Article  Google Scholar 

  • Zhu X, O’nions R, Guo Y, Belshaw N, Rickard D (2000) Determination of natural Cu-isotope variation by plasma-source mass spectrometry: implications for use as geochemical tracers. Chem Geol 163:139–149

    Article  Google Scholar 

  • Zhu X, Guo Y, Williams R, O’nions R, Matthews A, Belshaw N, Canters G, De Waal E, Weser U, Burgess B (2002) Mass fractionation processes of transition metal isotopes. Earth Planet Sci Lett 200:47–62

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Academic Exchange Service (DAAD-57076462) and Graduate School GeoFluxes. We thank Ulrich Kroll for his invaluable technical supports. We are grateful to two anonymous reviewers for their thoughtful and constructive reviews on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongmei Qi.

Additional information

Communicated by Timothy L. Grove.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, D., Behrens, H., Lazarov, M. et al. Cu isotope fractionation during reduction processes in aqueous systems: evidences from electrochemical deposition. Contrib Mineral Petrol 174, 37 (2019). https://doi.org/10.1007/s00410-019-1568-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-019-1568-4

Keywords

Navigation