Jump to content

Mabinlin

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Mabinlin 1
Identifiers
Organism?
Symbol2SS1_CAPMA
UniProtP80351
Search for
StructuresSwiss-model
DomainsInterPro
Mabinlin 2
Also known as: Mabinlin II, MAB II
Identifiers
Organism?
Symbol2SS2_CAPMA
PDB2DS2
UniProtP30233
Search for
StructuresSwiss-model
DomainsInterPro
Mabinlin 3
Identifiers
Organism?
Symbol2SS3_CAPMA
UniProtP80352
Search for
StructuresSwiss-model
DomainsInterPro
Mabinlin 4
Identifiers
Organism?
Symbol2SS4_CAPMA
UniProtP80353
Search for
StructuresSwiss-model
DomainsInterPro

Mabinlins are sweet-tasting proteins extracted from the seed of mabinlang (Capparis masaikai Levl.), a plant growing in Yunnan province of China. There are four homologues. Mabinlin-2 was first isolated in 1983[1] and characterised in 1993,[2] and is the most extensively studied of the four. The other variants of mabinlin-1, -3 and -4 were discovered and characterised in 1994.[3]

Protein structures

The 4 mabinlins are very similar in their amino acids sequences (see below).

Chain A
M-1: EPLCRRQFQQ HQHLRACQRY IRRRAQRGGL VD
M-2: QLWRCQRQFL QHQRLRACQR FIHRRAQFGG QPD
M-3: EPLCRRQFQQ HQHLRACQRY LRRRAQRGGL AD
M-4: EPLCRRQFQQ HQHLRACQRY LRRRAQRG

Chain B
M-1: EQRGPALRLC CNQLRQVNKP CVCPVLRQAA HQQLYQGQIE GPRQVRQLFR AARNLPNICK IPAVGRCQFT RW
M-2: QPRRPALRQC CNQLRQVDRP CVCPVLRQAA QQVLQRQIIQ GPQQLRRLFD AARNLPNICN IPNIGACPFR AW
M-3: EQRGPALRLC CNQLRQVNKP CVCPVLRQAA HQQLYQGQIE GPRQVRRLFR AARNLPNICK IPAVGRCQFT RW
M-4: EQRGPALRLC CNQLRQVNKP CVCPVLRQAA HQQLYQGQIE GPRQVRRLFR AARNLPNICK IPAVGRCQFT RW
Amino acid sequence of Mabinlins homologues are adapted from Swiss-Prot biological database of protein.[4][5][6][7]

The molecular weights of Mabinlin-1, Mabinlin-3 and Mabinlin-4 are 12.3 kDa, 12.3 kDa and 11.9 kDa, respectively.[3]

With a molecular weight of 10.4kDa, mabinlin-2 is lighter than mabinlin-1. It is a heterodimer consisting of two different chains A and B produced by post-translational cleavage. The A chain is composed of 33 amino acid residues and the B chain is composed of 72 amino acid residues. The B chain contains two intramolecular disulfide bonds and is connected to the A chain through two intermolecular disulfide bridges.[2][8]

Mabinlin-2 is the sweet-tasting protein with the highest known thermostability,[9] which is due to the presence of the four disulfide bridges.[10] It has been suggested also that the difference in the heat stability of the different mabinlin homologues is due to the presence of an arginine residue (heat-stable homologue) or a glutamine (heat-unstable homologue) at position 47 in the B-chain.[3]

The sequences of Mabilins cluster with Napins (InterProIPR000617).

Sweetness properties

Mabinlins sweetness were estimated to be about 100-400 times that of sucrose on molar basis, 10 times sucrose on a weight basis,[2][3] which make them less sweet than thaumatin (3000 times) but elicit a similar sweetness profile.[11]

The sweetness of mabinlin-2 is unchanged after 48 hours incubation at 80 °C.[2]

Mabinlin-3 and -4 sweetness stayed unchanged after 1 hour at 80 °C, while mabinlin-1 loses sweetness after 1 hour at the same condition.[3][12]

As a sweetener

Mabinlins, as proteins, are readily soluble in water and found to be highly sweet; however, mabinlin-2 with its high heat stability has the best chance to be used as a sweetener.

During the past decade, attempts have been made to produce mabinlin-2 industrially. The sweet-tasting protein has been successfully synthesised by a stepwise solid-phase method in 1998, however the synthetic protein had an astringent-sweet taste.[8]

Mabinlin-2 has been expressed in transgenic potato tubers, but no explicit results have been reported yet.[13] However, patents to protect production of recombinant mabinlin by cloning and DNA sequencing have been issued.[14]

See also

References

  1. ^ Hu Z, He M (1983). "Studies on mabinlin, a sweet protein from the seeds of Capparis masaikai levl. I. extraction, purification and certain characteristics". Acta Botan. Yunnan. (5): 207–212.
  2. ^ a b c d Liu X, Maeda S, Hu Z, Aiuchi T, Nakaya K, Kurihara Y (January 1993). "Purification, complete amino acid sequence and structural characterization of the heat-stable sweet protein, mabinlin II". European Journal of Biochemistry. 211 (1–2): 281–7. doi:10.1111/j.1432-1033.1993.tb19896.x. PMID 8425538.
  3. ^ a b c d e Nirasawa S, Nishino T, Katahira M, Uesugi S, Hu Z, Kurihara Y (August 1994). "Structures of heat-stable and unstable homologues of the sweet protein mabinlin. The difference in the heat stability is due to replacement of a single amino acid residue". European Journal of Biochemistry. 223 (3): 989–95. doi:10.1111/j.1432-1033.1994.tb19077.x. PMID 8055976.
  4. ^ Universal protein resource accession number P80351 for "Sweet protein mabinlin-1" at UniProt.
  5. ^ Universal protein resource accession number P30233 for "Sweet protein mabinlin-2" at UniProt.
  6. ^ Universal protein resource accession number P80352 for "Sweet protein mabinlin-3" at UniProt.
  7. ^ Universal protein resource accession number P80353 for "Sweet protein mabinlin-4" at UniProt.
  8. ^ a b Kohmura M, Ariyoshi Y (October 1998). "Chemical synthesis and characterization of the sweet protein mabinlin II". Biopolymers. 46 (4): 215–23. doi:10.1002/(SICI)1097-0282(19981005)46:4<215::AID-BIP3>3.0.CO;2-S. PMID 9715665.
  9. ^ Guan RJ, Zheng JM, Hu Z, Wang DC (July 2000). "Crystallization and preliminary X-ray analysis of the thermostable sweet protein mabinlin II". Acta Crystallographica Section D. 56 (Pt 7): 918–9. doi:10.1107/S0907444900005850. PMID 10930844.
  10. ^ Nirasawa S, Liu X, Nishino T, Kurihara Y (October 1993). "Disulfide bridge structure of the heat-stable sweet protein mabinlin II". Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology. 1202 (2): 277–80. doi:10.1016/0167-4838(93)90016-K. PMID 8399391.
  11. ^ Kurihara Y (1992). "Characteristics of antisweet substances, sweet proteins, and sweetness-inducing proteins". Critical Reviews in Food Science and Nutrition. 32 (3): 231–52. doi:10.1080/10408399209527598. PMID 1418601.
  12. ^ Kurihara Y, Nirasawa S (1997). "Structures and activities of sweetness-inducing substances (miraculin, curculin, strogin) and the heat-stable sweet protein, mabinlin" (PDF). Foods and Food Ingredients Journal of Japan (174): 67–74. Archived from the original (PDF) on 2013-09-12. Retrieved 2007-10-01.
  13. ^ Xiong LW, Sun S (1996). "Molecular cloning and transgenic expression of the sweet protein mabinlin in potato tubers". Plant Physiology. 111 (2): 147.
  14. ^ US patent 6051758, Sun, Samuel S.M.; Xiong, Liwen & Hu, Zhong et al., "Recombinant Sweet protein Mabinlin", issued 2000-04-18, assigned to University of Hawaii 
  • Media related to Mabinlin at Wikimedia Commons