Skip to main content

Brain iron and schizophrenia

  • Conference paper
Iron in Central Nervous System Disorders

Part of the book series: Key Topics in Brain Research ((KEYTOPICS))

Summary

The concentration of iron was determined by atomic absorption spectroscopy in post-mortem tissue from various brain regions in schizophrenic patients and control subjects without neuropsychiatric diseases. Analysis of iron content showed a clear regional difference with highest iron levels in the caudate nucleus. There was no correlation between iron content and the neuroleptic-free period prior to death. Iron content in the schizophrenic group was not different from controls for the cortex, gyrus cinguli, caudate nucleus, hippocampus, amygdala, corpus mamillare and hypothalamus. In one patient who had suffered from tardive dyskinesia prior to death, the iron concentration in all the brain regions examined was within the mean ± 2 SD range of those schizophrenic subjects without prior tardive dyskinesia. The present results suggest that there are no profound differences in the content of iron in post-mortem brain tissue of schizophrenic and control subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 39.99
Price excludes VAT (USA)
Softcover Book
USD 54.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bartzokis G, Garber HJ, Marder SR, Olendorf WH (1990) MRI in tardive dyskinesia: shortened left caudate T2. Biol Psychiatry 28: 1027–1036

    Article  PubMed  CAS  Google Scholar 

  • Campbell WG, Raskind MA, Gordon T, Shaw CM (1985) Iron pigment in the brain of a man with tardive dyskinesia. Am J Psychiatry 142: 364–365

    PubMed  CAS  Google Scholar 

  • Casanova MF, Waldman IN, Kleinman JE (1990) A postmortem quantitative study of iron in the globus pallidus of schizophrenic patients. Biol Psychiatry 27: 143–149

    Article  PubMed  CAS  Google Scholar 

  • Casanova ME, Comparini SO, Kim RW, Kleinman JE (1992) Staining intensity of brain iron in patients with schizophrenia: a postmortem study. J Neuropsychiatr Clin Neurosci 4: 36–41

    CAS  Google Scholar 

  • Feighner JP, Robins E, Guze SB, Woodruff RA, Winokur G, Munoz R (1972) Diagnostic criteria for use in psychiatric research. Arch Gen Psychiatry 26: 57–63

    Article  PubMed  CAS  Google Scholar 

  • Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3: 41–51

    Article  PubMed  CAS  Google Scholar 

  • Harrison WW, Netsky MG, Brown MD (1968) Trace elements in human brain: copper, zinc, iron, and magnesium. Clin Chim Acta 21: 55–60

    Article  PubMed  CAS  Google Scholar 

  • Hill JM (1988) The distribution of iron in the brain. In: Youdim MBH (ed) Brain iron: neurochemistry and behavioural aspects. Taylor and Francis, London, pp 1–24

    Google Scholar 

  • Hill JM, Switzer RC (1984) The regional distribution and cellular localization of iron in the rat brain. Neuroscience 11: 595–603

    Article  PubMed  CAS  Google Scholar 

  • Hopf A (1952) Über histopathologische Veränderungen im Pallidum und Striatum bei Schizophrenie. In: First International Congress of Neuropathology, vol 3. Rosenberg and Sellier, Turin, pp 629–635

    Google Scholar 

  • Hunter R, Blackwood W, Smith MC, Cumings JN (1968) Neuropathological findings in three cases of persistent dyskinesia following phenothiazine medication. J Neurol Sci 7: 263–273

    Article  PubMed  CAS  Google Scholar 

  • Josephy H (1930) Dementia praecox (Schizophrenie). In: Bumke O (Hrsg) Die Anatomie der Psychosen. Springer, Berlin

    Google Scholar 

  • Kornhuber J, Lange KW, Kruzik P, Jellinger K, Gabriel E, Riederer P (1993) The contents of iron, copper, zinc, magnesium, and calcium in post-mortem brain tissue from schizophrenic patients. Biol Psychiatry (submitted)

    Google Scholar 

  • Lange KW, Youdim MBH, Riederer P (1992) Neurotoxicity and neuroprotection in Parkinson’s disease. J Neural Transm [Suppl] 38: 27–44

    CAS  Google Scholar 

  • Löwenthal A, Bruyn GW (1968) Calcification of the striopallidodentate system. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol 6. North-Holland, Amsterdam, pp 703–725

    Google Scholar 

  • Pollitt E, Leibel R (eds) (1982) Iron deficiency: brain biochemistry and behaviour. Raven Press, New York

    Google Scholar 

  • Potkin SG, Shore D, Torrey EF, Weinberger DR, Gillin JC, Henkin RI, Agarwal RP, Wyatt RJ (1982) Cerebrospinal fluid zinc concentrations in ex-heroin addicts and patients with schizophrenia: some preliminary observations. Biol Psychiatry 17: 1315–1322

    PubMed  CAS  Google Scholar 

  • Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MBH (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52: 515–520

    Article  PubMed  CAS  Google Scholar 

  • Spatz H (1924) Über den Eisennachweis im Gehirn, besonders in Zentren des extrapyramidal-motorischen Systems. Z Neurol Psychiat LXXVII: 261–390

    Google Scholar 

  • Schiffer D (1971) Calcification in the nervous tissue. In: Minkler J (ed) Pathology of the nervous system, vol 3. McGraw-Hill, New York, pp 1342–1360

    Google Scholar 

  • Smeyers-Verbeke J, Michotte Y, Pelsmaeckers J, et al (1975) The chemical composition of idiopathic nonarteriosclerotic cerebral calcifications. Neurology 25: 48–57

    PubMed  CAS  Google Scholar 

  • Stevens BJ (1970) Clinical applications of atomic absorption spectroscopy. Varian Techtron Pty Ltd, Australia

    Google Scholar 

  • Stevens JR (1982) Neuropathology of schizophrenia. Arch Gen Psychiatry 39: 1131–1139

    Article  PubMed  CAS  Google Scholar 

  • Weiner WJ, Nausieda PA, Klawans HL (1977) Effect of chlorpromazine on central nervous system concentrations of manganese, iron, and copper. Life Sci 20: 1181–1186

    Article  PubMed  CAS  Google Scholar 

  • Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1: 80–83

    Article  Google Scholar 

  • Yehuda S, Youdim MBH (1988) Brain iron deficiency: biochemistry and behaviour. In: Youdim MBH (ed) Brain iron: neurochemical and behavioural aspects. Taylor and Francis, London, pp 89–114

    Google Scholar 

  • Youdim MBH (1988) Brain iron: neurochemical and behavioural aspects. Taylor and Francis, London

    Google Scholar 

  • Youdim MBH (1990) Developmental neuropharmacological and biochemical aspects of iron-deficiency. In: Dobbing J (ed) Brain, behaviour and iron-deficiency. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Youdim MBH, Ben-Shachar D, Riederer P (1989) Is Parkinson’s disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration? Acta Neurol Scand 26: 47–54

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag/Wien

About this paper

Cite this paper

Lange, K.W. et al. (1993). Brain iron and schizophrenia. In: Riederer, P., Youdim, M.B.H. (eds) Iron in Central Nervous System Disorders. Key Topics in Brain Research. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9322-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9322-8_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82520-4

  • Online ISBN: 978-3-7091-9322-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics