Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Decoding protein–RNA interactions using CLIP-based methodologies

Abstract

Protein–RNA interactions are central to all RNA processing events, with pivotal roles in the regulation of gene expression and cellular functions. Dysregulation of these interactions has been increasingly linked to the pathogenesis of human diseases. High-throughput approaches to identify RNA-binding proteins and their binding sites on RNA — in particular, ultraviolet crosslinking followed by immunoprecipitation (CLIP) — have helped to map the RNA interactome, yielding transcriptome-wide protein–RNA atlases that have contributed to key mechanistic insights into gene expression and gene-regulatory networks. Here, we review these recent advances, explore the effects of cellular context on RNA binding, and discuss how these insights are shaping our understanding of cellular biology. We also review the potential therapeutic applications arising from new knowledge of protein–RNA interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Insights into pre-mRNA processing from protein–RNA interaction profiles.
Fig. 2: Insights into cytoplasmic mRNA regulation from protein–RNA interaction profiles.
Fig. 3: Dynamics of protein–RNA interactions depending on cellular state.
Fig. 4: Protein–RNA interactions implicated in host–virus interactions.
Fig. 5: Protein–RNA interaction maps as drug discovery assays.

Similar content being viewed by others

References

  1. Lunde, B. M., Moore, C. & Varani, G. RNA-binding proteins: modular design for efficient function. Nat. Rev. Mol. Cell Biol. 8, 479–490 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Castello, A. et al. Identification of RNA-binding domains of RNA-binding proteins in cultured cells on a system-wide scale with RBDmap. Nat. Protoc. 12, 2447–2464 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Castello, A. et al. Comprehensive identification of RNA-binding domains in human cells. Mol. Cell 63, 696–671 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Licatalosi, D. D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008). To our knowledge, this study is the first to couple high-throughput, short-read sequencing to ultraviolet crosslinking followed by immunoprecipitation (CLIP), providing a comprehensive protein–RNA interaction map of the neuronal splicing factor NOVA in the brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yeo, G. W. et al. An RNA code for the FOX2 splicing regulator revealed by mapping RNA–protein interactions in stem cells. Nat. Struct. Mol. Biol. 16, 130–137 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. König, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17, 909–915 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Van Nostrand, E. L. et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods 13, 508–514 (2016). This study developed an improved CLIP methodology that was used to map the protein–RNA interactomes of 73 diverse RNA-binding proteins (RBPs) in two human cell lines.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zarnegar, B. J. et al. irCLIP platform for efficient characterization of protein-RNA interactions. Nat. Methods 13, 489–492 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lovci, M. T. et al. Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges. Nat. Struct. Mol. Biol. 20, 1434–1442 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Uren, P. J. et al. Site identification in high-throughput RNA-protein interaction data. Bioinformatics 28, 3013–3020 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Corcoran, D. L. et al. PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol. 12, R79 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boyle, E. A. et al. Skipper analysis of eCLIP datasets enables sensitive detection of constrained translation factor binding sites. Cell Genom. 3, 100317 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Luo, E. C. et al. Large-scale tethered function assays identify factors that regulate mRNA stability and translation. Nat. Struct. Mol. Biol. 27, 989–1000 (2020). This study is the first large-scale and systematic screen to directly assess the ability of RBPs to regulate mRNA stability and translation, identifying programmable translational enhancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Izaurralde, E. et al. A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 78, 657–668 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Calero, G. et al. Structural basis of m7GpppG binding to the nuclear cap-binding protein complex. Nat. Struct. Biol. 9, 912–917 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Giacometti, S. et al. Mutually exclusive CBC-containing complexes contribute to RNA fate. Cell Rep. 18, 2635–2650 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mazza, C., Segref, A., Mattaj, I. W. & Cusack, S. Large-scale induced fit recognition of an m(7)GpppG cap analogue by the human nuclear cap-binding complex. EMBO J. 21, 5548–5557 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dantsuji, S., Ohno, M. & Taniguchi, I. The hnRNP C tetramer binds to CBC on mRNA and impedes PHAX recruitment for the classification of RNA polymerase II transcripts. Nucleic Acids Res. 51, 1393–1408 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cordiner, R. A. et al. Temporal-iCLIP captures co-transcriptional RNA–protein interactions. Nat. Commun. 14, 696 (2023). This is one of the first papers to use CLIP data in conjunction with an inhibitory compound to map the spatiotemporal loading of specific RBPs onto mRNAs. A time-resolved iCLIP assay synchronized with inhibition of RNA polymerase II is used to detail the orchestrated recruitment of RBPs, including CBC, ALYREF and RBM7, onto nascent mRNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lagier-Tourenne, C. et al. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat. Neurosci. 15, 1488–1497 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ameur, A. et al. Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain. Nat. Struct. Mol. Biol. 18, 1435–1440 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Yu, Y. & Reed, R. FUS functions in coupling transcription to splicing by mediating an interaction between RNAP II and U1 snRNP. Proc. Natl Acad. Sci. USA 112, 8608–8613 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xiao, R. et al. Pervasive chromatin–RNA binding protein interactions enable RNA-based regulation of transcription. Cell 178, 107–121.e18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zeng, Y. et al. Lin28A binds active promoters and recruits tet1 to regulate gene expression. Mol. Cell 61, 153–160 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Barbieri, I. et al. Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature 552, 126–131 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fan, H. et al. The nuclear matrix protein HNRNPU maintains 3D genome architecture globally in mouse hepatocytes. Genome Res. 28, 192–202 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bi, X. et al. RNA targets ribogenesis factor WDR43 to chromatin for transcription and pluripotency control. Mol. Cell 75, 102–116.e9 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Ren, Y. et al. A global screening identifies chromatin-enriched RNA-binding proteins and the transcriptional regulatory activity of QKI5 during monocytic differentiation. Genome Biol. 22, 290 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, X. & Fu, X. D. Chromatin-associated RNAs as facilitators of functional genomic interactions. Nat. Rev. Genet. 20, 503–519 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Holmes, Z. E. et al. The Sox2 transcription factor binds RNA. Nat. Commun. 11, 1805 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saldaña-Meyer, R. et al. RNA interactions are essential for CTCF-mediated genome organization. Mol. Cell 76, 412–422.e5 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sigova, A. A. et al. Transcription factor trapping by RNA in gene regulatory elements. Science 350, 978–981 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oksuz, O. et al. Transcription factors interact with RNA to regulate genes. Mol. Cell 83, 2449–2463 (2022). Combining high-throughput ultraviolet crosslinking and mass spectrometry with meta-analysis of similar proteomic studies, the authors conclude that nearly half of transcription factors are also RBPs.

    Article  Google Scholar 

  35. Witten, J. T. & Ule, J. Understanding splicing regulation through RNA splicing maps. Trends Genet. 27, 89–97 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, Z. et al. iCLIP predicts the dual splicing effects of TIA–RNA interactions. PLoS Biol. 8, e1000530 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Briese, M. et al. A systems view of spliceosomal assembly and branchpoints with iCLIP. Nat. Struct. Mol. Biol. 26, 930–940 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen, W. et al. Transcriptome-wide interrogation of the functional intronome by spliceosome profiling. Cell 173, 1031–1044.e13 (2018). This study describes spliceosome profiling, a strategy to sequence RNAs that co-purify with late-stage spliceosomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Burke, J. E. et al. Spliceosome profiling visualizes operations of a dynamic RNP at nucleotide resolution. Cell 173, 1014–1030.e17 (2018). This study also describes spliceosome profiling of splicesome-bound pre-mRNAs, intermediates and spliced mRNAs at single-nucleotide resolution.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pyle, A. M. Translocation and unwinding mechanisms of RNA and DNA helicases. Annu. Rev. Biophys. 37, 317–336 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Strittmatter, L. M. et al. psiCLIP reveals dynamic RNA binding by DEAH-box helicases before and after exon ligation. Nat. Commun. 12, 1488 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Semlow, D. R., Blanco, M. R., Walter, N. G. & Staley, J. P. Spliceosomal DEAH-box ATPases remodel pre-mRNA to activate alternative splice sites. Cell 164, 985–998 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zarnack, K. et al. Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell 152, 453–466 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Attig, J. et al. Heteromeric RNP assembly at LINEs controls lineage-specific RNA processing. Cell 174, 1067–1081.e17 (2018). From iCLIP and eCLIP datasets, the authors identify RBPs that bind long interspersed nuclear elements (LINEs) to repress RNA processing. Evolutionarily young LINEs are found in deep introns, greatly repressed, whereas evolutionarily older LINEs give rise to tissue-specific exons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Van Nostrand, E. L. et al. Principles of RNA processing from analysis of enhanced CLIP maps for 150 RNA binding proteins. Genome Biol. 21, 90 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Van Nostrand, E. L. et al. A large-scale binding and functional map of human RNA-binding proteins. Nature 583, 711–719 (2020). This study produced 1,223 replicated data sets for 356 RBPs from five large-scale assays as part of the ENCODE project. 

    Article  PubMed  PubMed Central  Google Scholar 

  47. Martin, G., Gruber, A. R., Keller, W. & Zavolan, M. Genome-wide analysis of pre-mRNA 3’ end processing reveals a decisive role of human cleavage factor I in the regulation of 3’ UTR length. Cell Rep. 1, 753–763 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Yao, C. et al. Transcriptome-wide analyses of CstF64–RNA interactions in global regulation of mRNA alternative polyadenylation. Proc. Natl Acad. Sci. USA 109, 18773–18778 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bahn, J. H. et al. Genomic analysis of ADAR1 binding and its involvement in multiple RNA processing pathways. Nat. Commun. 6, 6355 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Masuda, A. et al. tRIP-seq reveals repression of premature polyadenylation by co-transcriptional FUS-U1 snRNP assembly. EMBO Rep. 21, e49890 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hautbergue, G. M., Hung, M. L., Golovanov, A. P., Lian, L. Y. & Wilson, S. A. Mutually exclusive interactions drive handover of mRNA from export adaptors to TAP. Proc. Natl Acad. Sci. USA 105, 5154–5159 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Viphakone, N. et al. Co-transcriptional loading of RNA export factors shapes the human transcriptome. Mol. Cell 75, 310–323.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Müller-McNicoll, M. et al. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export. Genes. Dev. 30, 553–566 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Singh, G. et al. The cellular EJC interactome reveals higher-order mRNP structure and an EJC–SR protein nexus. Cell 151, 7560–7764 (2012).

    Article  Google Scholar 

  55. Saulière, J. et al. CLIP-seq of eIF4AIII reveals transcriptome-wide mapping of the human exon junction complex. Nat. Struct. Mol. Biol. 19, 1124–1131 (2012).

    Article  PubMed  Google Scholar 

  56. Mabin, J. W. et al. The exon junction complex undergoes a compositional switch that alters mRNP structure and nonsense-mediated mRNA decay activity. Cell Rep. 25, 2431 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nagy, E. & Maquat, L. E. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem. Sci. 23, 198–199 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Imamachi, N., Salam, K. A., Suzuki, Y. & Akimitsu, N. A GC-rich sequence feature in the 3′ UTR directs UPF1-dependent mRNA decay in mammalian cells. Genome Res. 27, 407–418 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hurt, J. A., Robertson, A. D. & Burge, C. B. Global analyses of UPF1 binding and function reveal expanded scope of nonsense-mediated mRNA decay. Genome Res. 23, 1636–1650 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hogg, J. R. & Goff, S. P. Upf1 senses 3’ UTR length to potentiate mRNA decay. Cell 143, 379–389 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kashima, I. et al. Binding of a novel SMG-1–Upf1–eRF1–eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay. Genes. Dev. 20, 355–367 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zünd, D., Gruber, A. R., Zavolan, M. & Mühlemann, O. Translation-dependent displacement of UPF1 from coding sequences causes its enrichment in 3’ UTRs. Nat. Struct. Mol. Biol. 20, 936–943 (2013).

    Article  PubMed  Google Scholar 

  63. Lee, A. S. Y., Kranzusch, P. J. & Cate, J. H. D. eIF3 targets cell-proliferation messenger RNAs for translational activation or repression. Nature 522, 111–114 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Guenther, U.-P. et al. The helicase Ded1p controls use of near-cognate translation initiation codons in 5′UTRs. Nature 559, 130–134 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Benhalevy, D. et al. The human CCHC-type zinc finger nucleic acid-binding protein binds G-rich elements in target mRNA coding sequences and promotes translation. Cell Rep. 18, 2979–2990 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Darnell, J. C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247–261 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ascano, M. Jr et al. FMR1 targets distinct mRNA sequence elements to regulate protein expression. Nature 492, 382–386 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stebbins-Boaz, B., Cao, Q., de Moor, C. H., Mendez, R. & Richter, J. D. Maskin is a CPEB-associated factor that transiently interacts with elF-4E. Mol. Cell 4, 1017–1027 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Poetz, F. et al. Control of immediate early gene expression by CPEB4-repressor complex-mediated mRNA degradation. Genome Biol. 23, 193 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stepien, B. K. et al. RNA-binding profiles of Drosophila CPEB proteins Orb and Orb2. Proc. Natl Acad. Sci. USA 113, E7030–E7038 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hong, S. et al. LARP1 functions as a molecular switch for mTORC1-mediated translation of an essential class of mRNAs. eLife 6, e25237 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kaiser, R. W. J. et al. A protein–RNA interaction atlas of the ribosome biogenesis factor AATF. Sci. Rep. 9, 11071 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Calviello, L. et al. DDX3 depletion represses translation of mRNAs with complex 5’ UTRs. Nucleic Acids Res. 49, 5336–5350 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Simsek, D. et al. The mammalian ribo-interactome reveals ribosome functional diversity and heterogeneity. Cell 169, 1051–1065.e18 (2017). The authors used ribosome affinity purification to identify hundreds of ribosome-associated proteins. They analysed the specific RNA-binding preferences of one such ribosome-associated protein, the metabolic enzyme PKM2, using iCLIP and found a central role of the ribosome machinery in integrating and connecting diverse cellular processes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sohrabi-Jahromi, S. et al. Transcriptome maps of general eukaryotic RNA degradation factors. eLife 8, e47040 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lebedeva, S. et al. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol. Cell 43, 340–352 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Rieger, M. A. et al. CLIP and massively parallel functional analysis of CELF6 reveal a role in destabilizing synaptic gene mRNAs through interaction with 3′ UTR elements. Cell Rep. 33, 108531 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mukherjee, N. et al. Global target mRNA specification and regulation by the RNA-binding protein ZFP36. Genome Biol. 15, R12 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bird, C. W. et al. KSRP modulation of GAP-43 mRNA stability restricts axonal outgrowth in embryonic hippocampal neurons. PLoS One 8, e79255 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Meyer, C. et al. The TIA1 RNA-binding protein family regulates EIF2AK2-mediated stress response and cell cycle progression. Mol. Cell 69, 622–635.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Enwerem, I. I. I. et al. Human Pumilio proteins directly bind the CCR4–NOT deadenylase complex to regulate the transcriptome. RNA 27, 445–464 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Elcheva, I., Goswami, S., Noubissi, F. K. & Spiegelman, V. S. CRD-BP protects the coding region of betaTrCP1 mRNA from miR-183-mediated degradation. Mol. Cell 35, 240–246 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Busch, B. et al. The oncogenic triangle of HMGA2, LIN28B and IGF2BP1 antagonizes tumor-suppressive actions of the let-7 family. Nucleic Acids Res. 44, 3845–3864 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Degrauwe, N. et al. The RNA binding protein IMP2 preserves glioblastoma stem cells by preventing let-7 target gene silencing. Cell Rep. 15, 1634–1647 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Conway, A. E. et al. Enhanced CLIP uncovers IMP protein–RNA targets in human pluripotent stem cells important for cell adhesion and survival. Cell Rep. 15, 666–679 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rothamel, K. et al. ELAVL1 primarily couples mRNA stability with the 3’ UTRs of interferon-stimulated genes. Cell Rep. 35, 109178 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Prikryl, J., Rojas, M., Schuster, G. & Barkan, A. Mechanism of RNA stabilization and translational activation by a pentatricopeptide repeat protein. Proc. Natl Acad. Sci. USA 108, 415–420 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Song, J. et al. Regulation of alternative polyadenylation by the C2H2-zinc-finger protein Sp1. Mol. Cell 82, 3135–3150.e9 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Wang, E. T. et al. Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins. Genome Res. 25, 858–871 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wei, L. et al. Overlapping activities of ELAV/Hu family RNA binding proteins specify the extended neuronal 3’ UTR landscape in Drosophila. Mol. Cell 80, 140–155.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wei, L. & Lai, E. C. Regulation of the alternative neural transcriptome by ELAV/Hu RNA binding proteins. Front. Genet. 13, 848626 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gruber, A. J. et al. A comprehensive analysis of 3’ end sequencing data sets reveals novel polyadenylation signals and the repressive role of heterogeneous ribonucleoprotein C on cleavage and polyadenylation. Genome Res. 26, 1145–1159 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fischl, H. et al. hnRNPC regulates cancer-specific alternative cleavage and polyadenylation profiles. Nucleic Acids Res. 47, 7580–7591 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gruber, A. J. et al. Discovery of physiological and cancer-related regulators of 3’ UTR processing with KAPAC. Genome Biol. 19, 44 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Mitchell, S. F., Jain, S., She, M. & Parker, R. Global analysis of yeast mRNPs. Nat. Struct. Mol. Biol. 20, 127–133 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Radhakrishnan, A. et al. The DEAD-box protein Dhh1p couples mRNA decay and translation by monitoring codon optimality. Cell 167, 122–132.e9 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yoon, J. H. et al. PAR-CLIP analysis uncovers AUF1 impact on target RNA fate and genome integrity. Nat. Commun. 5, 5248 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Cho, J. et al. LIN28A is a suppressor of ER-associated translation in embryonic stem cells. Cell 151, 765–777 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Tan, F. E., Sathe, S., Wheeler, E. C. & Yeo, G. W. Non-microRNA binding competitively inhibits LIN28 regulation. Cell Rep. 36, 109517 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li, J.-H. et al. Discovery of protein–lncRNA interactions by integrating large-scale CLIP-seq and RNA-seq datasets. Front. Bioeng. Biotechnol. 2, 88 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Li, J.-H., Liu, S., Zhou, H., Qu, L.-H. & Yang, J.-H. starBase v2.0: decoding miRNA–ceRNA, miRNA–ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42, D92–D97 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Qian, W. et al. Linc00668 promotes invasion and stem cell-like properties of breast cancer cells by interaction with SND1. Front. Oncol. 10, 88 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Nussbacher, J. K. & Yeo, G. W. Systematic discovery of RNA binding proteins that regulate microRNA levels. Mol. Cell 69, 1005–1016.e7 (2018). By comparing the protein–miRNA interaction profiles of 126 RBPs, the authors discovered RBPs that affect miRNA processing steps.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hasler, D. et al. The Alazami syndrome-associated protein LARP7 guides U6 small nuclear RNA modification and contributes to splicing robustness. Mol. Cell 77, 1014–1031.e13 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Kishore, S. et al. Insights into snoRNA biogenesis and processing from PAR-CLIP of snoRNA core proteins and small RNA sequencing. Genome Biol. 14, R45 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zhang, M. et al. A snoRNA–tRNA modification network governs codon-biased cellular states. Proc. Natl Acad. Sci. USA 120, e2312126120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gogakos, T. et al. Characterizing expression and processing of precursor and mature human tRNAs by hydro-tRNAseq and PAR-CLIP. Cell Rep. 20, 1463–1475 (2017). The authors developed a sensitive technique for sequencing transfer RNA (tRNA) that they combined with PAR-CLIP of the pre-tRNA processing protein SSB to identify actively transcribed tRNA loci and tRNA genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kumar, P., Anaya, J., Mudunuri, S. B. & Dutta, A. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biol. 12, 78 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Liang, J. et al. Small nucleolar RNAs: insight into their function in cancer. Front. Oncol. 9, 587 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Khoddami, V. & Cairns, B. R. Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat. Biotechnol. 31, 458–464 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hussain, S. et al. NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep. 4, 255–261 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Song, J. et al. Differential roles of human PUS10 in miRNA processing and tRNA pseudouridylation. Nat. Chem. Biol. 16, 160–169 (2020). In this study, PAR-CLIP analysis shows that PUS10 has distinct regulatory roles in the nucleus and cytoplasm, involving processing of miRNAs and tRNA pseudouridylation, respectively.

    Article  CAS  PubMed  Google Scholar 

  113. Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell 149, 1635–1646 (2012). This study introduces a genome-wide method of identifying N6-methyladenosine (m6A) sites in over 7,000 mammalian genes and provides a resource for identifying substrates for adenosine methylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Carlile, T. M. et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515, 143–146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Schwartz, S. et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159, 148–162 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lovejoy, A. F., Riordan, D. P. & Brown, P. O. Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLoS One 9, e110799 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Meyer, K. D. & Jaffrey, S. R. Rethinking m6A readers, writers, and erasers. Annu. Rev. Cell Dev. Biol. 33, 319–342 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kontur, C., Jeong, M., Cifuentes, D. & Giraldez, A. J. Ythdf m6A readers function redundantly during zebrafish development. Cell Rep. 33, 108598 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Zaccara, S. & Jaffrey, S. R. A unified model for the function of YTHDF proteins in regulating m6A-modified mRNA. Cell 181, 1582–1595.e18 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Huang, H. et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol. 20, 285–295 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhao, B. S. et al. m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature 542, 475–478 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang, C., Fu, J. & Zhou, Y. A review in research progress concerning m6A methylation and immunoregulation. Front. Immunol. 10, 922 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Panneerdoss, S. et al. Cross-talk among writers, readers, and erasers of m6A regulates cancer growth and progression. Sci. Adv. 4, eaar8263 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Jiang, X. et al. The role of m6A modification in the biological functions and diseases. Signal. Transduct. Target. Ther. 6, 74 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kossinova, O. A. et al. Reorganization of the landscape of translated mRNAs in NSUN2-deficient cells and specific features of NSUN2 target mRNAs. Int. J. Mol. Sci. 23, 9740 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chen, X. et al. 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat. Cell Biol. 21, 978–990 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Yang, X. et al. 5-methylcytosine promotes mRNA export — NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res. 27, 606–625 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Menezes, M. R., Balzeau, J. & Hagan, J. P. 3′ RNA uridylation in epitranscriptomics, gene regulation, and disease. Front. Mol. Biosci. 5, 61 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Ustianenko, D. et al. TUT‐DIS3L2 is a mammalian surveillance pathway for aberrant structured non‐coding RNAs. EMBO J. 35, 2179–2191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ustianenko, D. et al. Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs. RNA 19, 1632–1638 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Astuti, D. et al. Germline mutations in DIS3L2 cause the Perlman syndrome of overgrowth and Wilms tumor susceptibility. Nat. Genet. 44, 277–284 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Herman, A. B. et al. FXR1 Is an IL-19-responsive RNA-binding protein that destabilizes pro-inflammatory transcripts in vascular smooth muscle cells. Cell Rep. 24, 1176–1189 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Markmiller, S. et al. Persistent mRNA localization defects and cell death in ALS neurons caused by transient cellular stress. Cell Rep. 36, 109685 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. Klim, J. R. et al. ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat. Neurosci. 22, 167–179 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Melamed, Z. et al. Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat. Neurosci. 22, 180–190 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bajaj, J. et al. An in vivo genome-wide CRISPR screen identifies the RNA-binding protein Staufen2 as a key regulator of myeloid leukemia. Nat. Cancer 1, 410–422 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Maatz, H. et al. RNA-binding protein RBM20 represses splicing to orchestrate cardiac pre-mRNA processing. J. Clin. Invest. 124, 3419–3430 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Fenix, A. M. et al. Gain-of-function cardiomyopathic mutations in RBM20 rewire splicing regulation and re-distribute ribonucleoprotein granules within processing bodies. Nat. Commun. 12, 6324 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Engel, K. L., Arora, A., Goering, R., Lo, H. G. & Taliaferro, J. M. Mechanisms and consequences of subcellular RNA localization across diverse cell types. Traffic 21, 404–418 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Alami, N. H. et al. Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron 81, 536–543 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nat. Methods 19, 534–546 (2022).

    Article  CAS  PubMed  Google Scholar 

  142. Zeng, H. et al. Spatially resolved single-cell translatomics at molecular resolution. Science 380, eadd3067 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kaewsapsak, P., Shechner, D. M., Mallard, W., Rinn, J. L. & Ting, A. Y. Live-cell mapping of organelle-associated RNAs via proximity biotinylation combined with protein-RNA crosslinking. eLife 6, e29224 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Markmiller, S. et al. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell 172, 590–604.e13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Prentzell, M. T. et al. G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling. Cell 184, 655–674.e27 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Liao, Y. C. et al. RNA granules hitchhike on lysosomes for long-distance transport, using annexin A11 as a molecular tether. Cell 179, 147–164.e20 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sidibé, H., Dubinski, A. & Vande, V. C. The multi-functional RNA-binding protein G3BP1 and its potential implication in neurodegenerative disease. J. Neurochem. 157, 944–962 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Schmidt, N. et al. The SARS-CoV-2 RNA-protein interactome in infected human cells. Nat. Microbiol. 6, 339–353 (2021).

    Article  CAS  PubMed  Google Scholar 

  149. Flynn, R. A. et al. Discovery and functional interrogation of SARS-CoV-2 RNA–host protein interactions. Cell 184, 2394–2411.e16 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lee, S. et al. The SARS-CoV-2 RNA interactome. Mol. Cell 81, 2838–2850.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Labeau, A. et al. Characterization and functional interrogation of the SARS-CoV-2 RNA interactome. Cell Rep. 39, 110744 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhang, S. et al. Comparison of viral RNA-host protein interactomes across pathogenic RNA viruses informs rapid antiviral drug discovery for SARS-CoV-2. Cell Res. 32, 9–23 (2022).

    Article  CAS  PubMed  Google Scholar 

  153. Iselin, L. et al. Uncovering viral RNA–host cell interactions on a proteome-wide scale. Trends Biochem. Sci. 47, 23–38 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kim, B. et al. Discovery of widespread host protein interactions with the pre-replicated genome of CHIKV using VIR-CLASP. Mol. Cell 78, 624–640.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ooi, Y. S. et al. An RNA-centric dissection of host complexes controlling flavivirus infection. Nat. Microbiol. 4, 2369–2382 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  156. LaPointe, A. T., Gebhart, N. N., Meller, M. E., Hardy, R. W. & Sokoloski, K. J. Identification and characterization of sindbis virus RNA–host protein interactions. J. Virol. 92, e02171–17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Takata, M. A. et al. CG dinucleotide suppression enables antiviral defence targeting non-self RNA. Nature 550, 124–127 (2017). Using CLIP-seq, the authors identify a preference for CG dinucleotide binding of the zinc-finger antiviral protein, which enables it to identify non-self RNA and exerts an evolutionary pressure on many RNA viruses to be depleted of CG sequences.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. York, A., Kutluay, S. B., Errando, M. & Bieniasz, P. D. The RNA binding specificity of human APOBEC3 proteins resembles that of HIV-1 nucleocapsid. PLoS Pathog. 12, e1005833 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Guo, Y. E., Riley, K. J., Iwasaki, A. & Steitz, J. A. Alternative capture of noncoding RNAs or protein-coding genes by herpesviruses to alter host T cell function. Mol. Cell 54, 67–79 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Stark, T. J., Arnold, J. D., Spector, D. H. & Yeo, G. W. High-resolution profiling and analysis of viral and host small RNAs during human cytomegalovirus infection. J. Virol. 86, 226–235 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zeng, J. et al. Functional mapping of AGO-associated Zika virus-derived small interfering RNAs in neural stem cells. Front. Cell. Infect. Microbiol. 11, 628887 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Luna, J. M. et al. Hepatitis C virus RNA functionally sequesters miR-122. Cell 160, 1099–1110 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Netzband, R. & Pager, C. T. Epitranscriptomic marks: emerging modulators of RNA virus gene expression. Wiley Interdisc. Rev. RNA 11, e1576 (2020).

    Article  CAS  Google Scholar 

  164. Kennedy, E. M. et al. Posttranscriptional m6A editing of HIV-1 mRNAs enhances viral gene expression. Cell Host Microbe 19, 675–685 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Chen, K. et al. High-resolution N6-methyladenosine (m6A) map using photo-crosslinking-assisted m(6) A sequencing. Angew. Chem. Int. Edn Engl. 54, 1587–1590 (2015).

    Article  CAS  Google Scholar 

  166. Courtney, D. G. et al. Epitranscriptomic addition of m5C to HIV-1 transcripts regulates viral gene expression. Cell Host Microbe 26, 217–227.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhou, Y. & Routh, A. Mapping RNA–capsid interactions and RNA secondary structure within virus particles using next-generation sequencing. Nucleic Acids Res. 48, e12 (2019).

    Article  PubMed Central  Google Scholar 

  168. Kessl, J. J. et al. HIV-1 integrase binds the viral RNA genome and is essential during virion morphogenesis. Cell 166, 1257–1268.e12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Brown, R. S., Anastasakis, D. G., Hafner, M. & Kielian, M. Multiple capsid protein binding sites mediate selective packaging of the alphavirus genomic RNA. Nat. Commun. 11, 4693 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sokoloski, K. J. et al. Identification of interactions between Sindbis virus capsid protein and cytoplasmic vRNA as novel virulence determinants. PLoS Pathog. 13, e1006473 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Hayashi, M., Schultz, E. P., Lanchy, J. M. & Lodmell, J. S. Time-resolved analysis of N-RNA interactions during RVFV infection shows qualitative and quantitative shifts in RNA encapsidation and packaging. Viruses 13, 2417 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kutluay, S. B. et al. Global changes in the RNA binding specificity of HIV-1 Gag regulate virion genesis. Cell 159, 1096–1109 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Banerjee, A. K. et al. SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses. Cell 183, 1325–1339.e21 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Xiang, J. S. et al. Discovery and functional interrogation of SARS-CoV-2 protein–RNA interactions. Preprint at bioRxiv https://doi.org/10.1101/2022.02.21.481223 (2022).

  175. Gowthaman, R., Deeds, E. J. & Karanicolas, J. Structural properties of non-traditional drug targets present new challenges for virtual screening. J. Chem. Inf. Model. 53, 2073–2081 (2013).

    Article  CAS  PubMed  Google Scholar 

  176. Bai, N. et al. Rationally designed inhibitors of the Musashi protein–RNA interaction by hotspot mimicry. Preprint at ResSq https://doi.org/10.1101/2023.01.09.523326 (2023).

  177. Julio, A. R. & Backus, K. M. New approaches to target RNA binding proteins. Curr. Opin. Chem. Biol. 62, 13–23 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wu, P. Inhibition of RNA-binding proteins with small molecules. Nat. Rev. Chem. 4, 441–458 (2020).

    Article  CAS  PubMed  Google Scholar 

  179. Sivaramakrishnan, M. et al. Binding to SMN2 pre-mRNA–protein complex elicits specificity for small molecule splicing modifiers. Nat. Commun. 8, 1476 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Campagne, S. et al. Structural basis of a small molecule targeting RNA for a specific splicing correction. Nat. Chem. Biol. 15, 1191–1198 (2019).

    Article  CAS  PubMed  Google Scholar 

  181. Lazear, M. R. et al. Proteomic discovery of chemical probes that perturb protein complexes in human cells. Mol. Cell 83, 1725–1742.e12 (2023).

    Article  CAS  PubMed  Google Scholar 

  182. Kathman, S. G. et al. Remodeling oncogenic transcriptomes by small molecules targeting NONO. Nat. Chem. Biol. 19, 825–836 (2023). The authors used eCLIP to elucidate the mechanism of action of chemical probes that target C145 of the RBP NONO. This targeting stabilizes NONO–RNA interactions and induces a trapping mechanism to inhibit protumorigenic transcriptional networks.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Lorenz, D. A. et al. Multiplexed transcriptome discovery of RNA-binding protein binding sites by antibody-barcode eCLIP. Nat. Methods 20, 65–69 (2023).

    Article  CAS  PubMed  Google Scholar 

  184. Brannan, K. W. et al. Robust single-cell discovery of RNA targets of RNA-binding proteins and ribosomes. Nat. Methods 18, 507–519 (2021). By fusing RBPs to the RNA base editor APOBEC1, the authors describe a way to facilitate the profiling of RBP–RNA interactions through sequencing C-to-U edits. To our knowledge, this is the first study to demonstrate RBP–RNA and ribosome–RNA interactions at single-cell resolution and with isoform sensitivity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. McMahon, A. C. et al. TRIBE: hijacking an RNA-editing enzyme to identify cell-specific targets of RNA-binding proteins. Cell 165, 742–753 (2016). By fusing RBPs to Drosophila ADAR proteins, the authors describe a method of identifying RBP–RNA substrates through sequencing A-to-I edits on the RNA, which facilitates antibody-free mapping of protein–RNA interactions from a small sample size.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Flamand, M. N., Ke, K., Tamming, R. & Meyer, K. D. Single-molecule identification of the target RNAs of different RNA binding proteins simultaneously in cells. Genes. Dev. 36, 1002–1015 (2022). This study combines TRIBE and STAMP to identify RBP targets of two different RBPs in cells at the same time.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Tegowski, M., Flamand, M. N. & Meyer, K.D. scDART-seq reveals distinct m6A signatures and mRNA methylation heterogeneity in single cells. Mol. Cell 82, 868–878.e10 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Meyer, K. D. DART-seq: an antibody-free method for global m6A detection. Nat. Methods 16, 1275–1280 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Burd, C. G. & Dreyfuss, G. Conserved structures and diversity of functions of RNA-binding proteins. Science 265, 615–621 (1994).

    Article  CAS  PubMed  Google Scholar 

  190. Gerstberger, S., Hafner, M. & Tuschl, T. A census of human RNA-binding proteins. Nat. Rev. Genet. 15, 829–845 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Rahman, R., Xu, W., Jin, H. & Rosbash, M. Identification of RNA-binding protein targets with HyperTRIBE. Nat. Protoc. 13, 1829–1849 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Medina-Munoz, H. C. et al. Expanded palette of RNA base editors for comprehensive RBP-RNA interactome studies. Nat. Commun. 15, 875 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Lin, Y. et al. RNA molecular recording with an engineered RNA deaminase. Nat. Methods 20, 1887–1899 (2023).

    Article  CAS  PubMed  Google Scholar 

  194. Zhang, Z. et al. Capturing RNA–protein interaction via CRUIS. Nucleic Acids Res. 48, e52 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Yi, W. et al. CRISPR-assisted detection of RNA–protein interactions in living cells. Nat. Methods 17, 685–688 (2020).

    Article  CAS  PubMed  Google Scholar 

  196. Han, S. et al. RNA–protein interaction mapping via MS2- or Cas13-based APEX targeting. Proc. Natl Acad. Sci. USA 117, 22068–22079 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Benhalevy, D., Anastasakis, D. G. & Hafner, M. Proximity-CLIP provides a snapshot of protein-occupied RNA elements in subcellular compartments. Nat. Methods 15, 1074–1082 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Fazal, F. M. et al. Atlas of subcellular RNA localization revealed by APEX-seq. Cell 178, 473–490.e26 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Padrón, A., Iwasaki, S. & Ingolia, N. T. Proximity RNA labeling by APEX-seq reveals the organization of translation initiation complexes and repressive RNA granules. Mol. Cell 75, 875–887.e5 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Chu, C. et al. Systematic discovery of Xist RNA binding proteins. Cell 161, 404–416 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. McHugh, C. A. et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521, 232–236 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Theil, K., Imami, K. & Rajewsky, N. Identification of proteins and miRNAs that specifically bind an mRNA in vivo. Nat. Commun. 10, 4205 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Minajigi, A. et al. Chromosomes. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science 349, aab2276 (2015).

    Article  PubMed  Google Scholar 

  204. Simon et al. The genomic binding sites of a noncoding RNA. Proc. Natl Acad. Sci. USA 108, 20497–20502 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Ramanathan, M. et al. RNA–protein interaction detection in living cells. Nat. Methods 15, 207–212 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Kudla, G., Granneman, S., Hahn, D., Beggs, J. D. & Tollervey, D. Cross-linking, ligation, and sequencing of hybrids reveals RNA–RNA interactions in yeast. Proc. Natl Acad. Sci. USA 108, 10010–10015 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Castello, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012).

    Article  CAS  PubMed  Google Scholar 

  208. Baltz, A. G. et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol. Cell 46, 674–690 (2012).

    Article  CAS  PubMed  Google Scholar 

  209. Trendel, J. et al. The human RNA-binding proteome and its dynamics during translational arrest. Cell 176, 391–403.e19 (2019).

    Article  CAS  PubMed  Google Scholar 

  210. Queiroz, R. M. L. et al. Comprehensive identification of RNA-protein interactions in any organism using orthogonal organic phase separation (OOPS). Nat. Biotechnol. 37, 169–178 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Bao, X. et al. Capturing the interactome of newly transcribed RNA. Nat. Methods 15, 213–220 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Huang, R., Han, M., Meng, L. & Chen, X. Transcriptome-wide discovery of coding and noncoding RNA-binding proteins. Proc. Natl Acad. Sci. USA 115, E3879–E3887 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank K. Rhine, S. Aigner, J. C. Schmok, O. Mizrahi, other members of the Yeo Lab and E. Lécuyer for helpful discussions and feedback. G.W.Y. is supported by NIH grant R01 HG004659, U24 grant HG009889 and an Allen Distinguished Investigator Award (a Paul G. Allen Frontiers Group advised grant of the Paul G. Allen Foundation). G.W.Y. is a visiting professor at the National University of Singapore. J.S.X. is supported by an NMRC OF-YIRG grant (MOH-000940).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and wrote the article. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Gene W. Yeo.

Ethics declarations

Competing interests

G.W.Y. is a co-founder and member of the Board of Directors, on the Scientific Advisory Board, equity holder and paid consultant for Eclipse BioInnovations. G.W.Y. is a visiting professor at the National University of Singapore. G.W.Y.’s interests have been reviewed and approved by the University of California, San Diego, in accordance with its conflict-of-interest policies. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, J.S., Schafer, D.M., Rothamel, K.L. et al. Decoding protein–RNA interactions using CLIP-based methodologies. Nat Rev Genet (2024). https://doi.org/10.1038/s41576-024-00749-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41576-024-00749-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing