Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging advances in defining the molecular and therapeutic landscape of small-cell lung cancer

Abstract

Small-cell lung cancer (SCLC) has traditionally been considered a recalcitrant cancer with a dismal prognosis, with only modest advances in therapeutic strategies over the past several decades. Comprehensive genomic assessments of SCLC have revealed that most of these tumours harbour deletions of the tumour-suppressor genes TP53 and RB1 but, in contrast to non-small-cell lung cancer, have failed to identify targetable alterations. The expression status of four transcription factors with key roles in SCLC pathogenesis defines distinct molecular subtypes of the disease, potentially enabling specific therapeutic approaches. Overexpression and amplification of MYC paralogues also affect the biology and therapeutic vulnerabilities of SCLC. Several other attractive targets have emerged in the past few years, including inhibitors of DNA-damage-response pathways, epigenetic modifiers, antibody–drug conjugates and chimeric antigen receptor T cells. However, the rapid development of therapeutic resistance and lack of biomarkers for effective selection of patients with SCLC are ongoing challenges. Emerging single-cell RNA sequencing data are providing insights into the plasticity and intratumoural and intertumoural heterogeneity of SCLC that might be associated with therapeutic resistance. In this Review, we provide a comprehensive overview of the latest advances in genomic and transcriptomic characterization of SCLC with a particular focus on opportunities for translation into new therapeutic approaches to improve patient outcomes.

Key points

  • Continuing to improve the biological understanding and therapeutic strategies for early-stage small-cell lung cancer (SCLC) remains a critical need to improve the overall prognosis of SCLC.

  • Immune checkpoint inhibitors improve the overall survival in a minority of patients with extensive-stage SCLC (ES-SCLC). Repression of MHC I-dependent antigen-presentation machinery and low infiltration of cytotoxic T lymphocytes remain major challenges in improving outcome in a majority of patients with ES-SCLC.

  • The major transcriptional subtypes of SCLC have distinct biology and therapeutic vulnerabilities. However, application of SCLC subtypes as clinically actionable biomarkers continues to be a challenge.

  • Intratumoural heterogeneity and plasticity after treatment highlight the complexity of SCLC and present potential hurdles in treatment strategies for relapsed SCLC. Improvement in single-cell analysis methods, liquid biopsy platforms and rapid research autopsy programmes will potentially facilitate the understanding of SCLC biology, capturing the intratumoural heterogeneity and plasticity in treatment-resistant SCLC.

  • Novel cell surface targets (such as DLL3, SEZ6, TROP2 and B7-H3) and MHC-independent immunotherapy strategies are paving the path for promising clinical trials.

  • Results of the phase III ADRIATIC trial in limited-stage SCLC and accelerated FDA approval of tarlatamab for the treatment of ES-SCLC demonstrate significant advances in the treatment of SCLC. Future work will focus on understanding treatment resistance and potential combinatorial strategies to improve the therapeutic landscape in SCLC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genetic and transcriptomic landscape of SCLC.
Fig. 2: Heterogeneity, plasticity and evolution of SCLC.
Fig. 3: Translational roadmap for SCLC.
Fig. 4: Current management strategy for SCLC.

Similar content being viewed by others

References

  1. Thomas, A. et al. Clinical and genomic characteristics of small cell lung cancer in never smokers: results from a retrospective multicenter cohort study. Chest 158, 1723–1733 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Varghese, A. M. et al. Small-cell lung cancers in patients who never smoked cigarettes. J. Thorac. Oncol. 9, 892–896 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang, S. et al. Survival changes in patients with small cell lung cancer and disparities between different sexes, socioeconomic statuses and ages. Sci. Rep. 7, 1339 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yang, W. et al. Differences between advanced large cell neuroendocrine carcinoma and advanced small cell lung cancer: a propensity score matching analysis. J. Cancer 14, 1541–1552 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Liu, S. V. et al. Updated overall survival and PD-L1 subgroup analysis of patients with extensive-stage small-cell lung cancer treated with atezolizumab, carboplatin, and etoposide (IMpower133). J. Clin. Oncol. 39, 619–630 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Paz-Ares, L. et al. Durvalumab, with or without tremelimumab, plus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer: 3-year overall survival update from CASPIAN. ESMO Open. 7, 100408 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu, S. V. et al. Five-year survival in patients with ES-SCLC treated with atezolizumab in IMpower133: imbrella a extension study results [abstract OA01.04]. J. Thorac. Oncol. 18, S44–S45 (2023).

    Article  Google Scholar 

  8. Rudin, C. M., Brambilla, E., Faivre-Finn, C. & Sage, J. Small-cell lung cancer. Nat. Rev. Dis. Prim. 7, 3 (2021).

    Article  PubMed  Google Scholar 

  9. Thomas, A., Pattanayak, P., Szabo, E. & Pinsky, P. Characteristics and outcomes of small cell lung cancer detected by CT screening. Chest 154, 1284–1290 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Song, P. et al. M3 muscarinic receptor antagonists inhibit small cell lung carcinoma growth and mitogen-activated protein kinase phosphorylation induced by acetylcholine secretion. Cancer Res. 67, 3936–3944 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Friedman, J. R. et al. Acetylcholine signaling system in progression of lung cancers. Pharmacol. Ther. 194, 222–254 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Soomro, Z. et al. Paraneoplastic syndromes in small cell lung cancer. J. Thorac. Dis. 12, 6253–6263 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Roth, B. J. et al. Randomized study of cyclophosphamide, doxorubicin, and vincristine versus etoposide and cisplatin versus alternation of these two regimens in extensive small-cell lung cancer: a phase III trial of the Southeastern Cancer Study Group. J. Clin. Oncol. 10, 282–291 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Sundstrøm, S. et al. Cisplatin and etoposide regimen is superior to cyclophosphamide, epirubicin, and vincristine regimen in small-cell lung cancer: results from a randomized phase III trial with 5 years’ follow-up. J. Clin. Oncol. 20, 4665–4672 (2002).

    Article  PubMed  Google Scholar 

  15. Zhang, S. & Cheng, Y. Immunotherapy for extensive-stage small-cell lung cancer: current landscape and future perspectives. Front. Oncol. 13, 1142081 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Torres-Durán, M. et al. Small-cell lung cancer in never-smokers. ESMO Open. 6, 100059 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Moffat, G. T., Wang, T. & Robinson, A. G. Small cell lung cancer in light/never smokers – a role for molecular testing? J. Natl Compr. Canc Netw. 21, 336–339 (2023).

    Article  PubMed  Google Scholar 

  18. Marcoux, N. et al. EGFR-mutant adenocarcinomas that transform to small-cell lung cancer and other neuroendocrine carcinomas: clinical outcomes. J. Clin. Oncol. 37, 278–285 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Quintanal-Villalonga, A. et al. Multi-omic analysis of lung tumors defines pathways activated in neuroendocrine transformation. Cancer Discov. 11, 3028–3047 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pleasance, E. D. et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463, 184–190 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Horn, L. et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N. Engl. J. Med. 379, 2220–2229 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Hellmann, M. D. et al. Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer. Cancer Cell 33, 853–861.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Doyle, A. et al. Markedly decreased expression of class I histocompatibility antigens, protein, and mRNA in human small-cell lung cancer. J. Exp. Med. 161, 1135–1151 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. George, J. et al. Comprehensive genomic profiles of small cell lung cancer. Nature 524, 47–53 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meuwissen, R. et al. Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Cancer Cell 4, 181–189 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Febres-Aldana, C. A. et al. Rb tumor suppressor in small cell lung cancer: combined genomic and IHC analysis with a description of a distinct Rb-proficient subset. Clin. Cancer Res. 28, 4702–4713 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sivakumar, S. et al. Integrative analysis of a large real-world cohort of small cell lung cancer identifies distinct genetic subtypes and insights into histologic transformation. Cancer Discov. 13, 1572–1591 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wagner, A. H. et al. Recurrent WNT pathway alterations are frequent in relapsed small cell lung cancer. Nat. Commun. 9, 3787 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sakre, N. et al. RICTOR amplification identifies a subgroup in small cell lung cancer and predicts response to drugs targeting mTOR. Oncotarget 8, 5992–6002 (2017).

    Article  PubMed  Google Scholar 

  31. Schwendenwein, A. et al. Molecular profiles of small cell lung cancer subtypes: therapeutic implications. Mol. Ther. Oncol. 20, 470–483 (2021).

    Article  CAS  Google Scholar 

  32. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).

    Article  Google Scholar 

  33. Schram, A. M., Chang, M. T., Jonsson, P. & Drilon, A. Fusions in solid tumours: diagnostic strategies, targeted therapy, and acquired resistance. Nat. Rev. Clin. Oncol. 14, 735–748 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Iwakawa, R. et al. Genome-wide identification of genes with amplification and/or fusion in small cell lung cancer. Genes Chromosomes Cancer 52, 802–816 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rudin, C. M. et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat. Genet. 44, 1111–1116 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ciampricotti, M. et al. Rlf-Mycl gene fusion drives tumorigenesis and metastasis in a mouse model of small cell lung cancer. Cancer Discov. 11, 3214–3229 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. der Hollander, J. et al. Aurora kinases A and B are up-regulated by Myc and are essential for maintenance of the malignant state. Blood 116, 1498–1505 (2010).

    Article  Google Scholar 

  38. Dominguez-Sola, D. & Gautier, J. MYC and the control of DNA replication. Cold Spring Harb. Perspect. Med. 4, a014423 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dauch, D. et al. A MYC–aurora kinase A protein complex represents an actionable drug target in p53-altered liver cancer. Nat. Med. 22, 744–753 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Sen, T. et al. CHK1 inhibition in small-cell lung cancer produces single-agent activity in biomarker-defined disease subsets and combination activity with cisplatin or olaparib. Cancer Res. 77, 3870–3884 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Byers, L. A. et al. A phase II trial of prexasertib (LY2606368) in patients with extensive-stage small-cell lung cancer. Clin. Lung Cancer 22, 531–540 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Owonikoko, T. K. et al. Randomized phase II study of paclitaxel plus alisertib versus paclitaxel plus placebo as second-line therapy for SCLC: primary and correlative biomarker analyses. J. Thorac. Oncol. 15, 274–287 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Grunblatt, E. et al. MYCN drives chemoresistance in small cell lung cancer while USP7 inhibition can restore chemosensitivity. Genes. Dev. 34, 1210–1226 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, Y. et al. A study on different therapies and prognosis-related factors for 101 patients with SCLC and brain metastases. Cancer Biol. Ther. 18, 670–675 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, N., Chu, Y. & Song, Q. Brain metastasis in patients with small cell lung cancer. Int. J. Gen. Med. 14, 10131–10139 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lord, C. J. & Ashworth, A. PARP inhibitors: synthetic lethality in the clinic. Science 355, 1152–1158 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sorscher, S. et al. Rate of pathogenic germline variants in patients with lung cancer. JCO Precis. Oncol. 7, e2300190 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tlemsani, C. et al. Whole-exome sequencing reveals germline-mutated small cell lung cancer subtype with favorable response to DNA repair-targeted therapies. Sci. Transl. Med. 13, eabc7488 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gazdar, A. F., Carney, D. N., Nau, M. M. & Minna, J. D. Characterization of variant subclasses of cell lines derived from small cell lung cancer having distinctive biochemical, morphological, and growth properties. Cancer Res. 45, 2924–2930 (1985).

    CAS  PubMed  Google Scholar 

  51. Rudin, C. M. et al. Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat. Rev. Cancer 19, 289–297 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Puri, S. et al. Real-world multiomic characterization of small cell lung cancer subtypes to reveal differential expression of clinically relevant biomarkers [abstract]. J. Clin. Oncol. 39 (Suppl. 15), 8508 (2021).

    Article  Google Scholar 

  53. Qu, S. et al. Molecular subtypes of primary small cell lung cancer tumors and their associations with neuroendocrine and therapeutic markers. J. Thorac. Oncol. 17, 141–153 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ireland, A. S. et al. MYC drives temporal evolution of small cell lung cancer subtypes by reprogramming neuroendocrine fate. Cancer Cell 38, 60–78.e12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Owonikoko, T. K. et al. YAP1 expression in SCLC defines a distinct subtype with T-cell-inflamed phenotype. J. Thorac. Oncol. 16, 464–476 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Baine, M. K. et al. SCLC subtypes defined by ASCL1, NEUROD1, POU2F3, and YAP1: a comprehensive immunohistochemical and histopathologic characterization. J. Thorac. Oncol. 15, 1823–1835 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gay, C. M. et al. Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities. Cancer Cell 39, 346–360.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Simpson, K. L. et al. A biobank of small cell lung cancer CDX models elucidates inter- and intratumoral phenotypic heterogeneity. Nat. Cancer 1, 437–451 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Jin, Y. et al. Identification of TAZ as the essential molecular switch in orchestrating SCLC phenotypic transition and metastasis. Natl Sci. Rev. 9, nwab2023 (2022).

    Article  Google Scholar 

  60. Tlemsani, C. et al. SCLC-CellMiner: a resource for small cell lung cancer cell line genomics and pharmacology based on genomic signatures. Cell Rep. 33, 108296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Polley, E. et al. Small cell lung cancer screen of oncology drugs, investigational agents, and gene and microRNA expression. J. Natl Cancer Inst. 108, djw122 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Caeser, R. et al. MAPK pathway activation selectively inhibits ASCL1-driven small cell lung cancer. iScience 24, 103224 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chan, J. M. et al. Signatures of plasticity, metastasis, and immunosuppression in an atlas of human small cell lung cancer. Cancer Cell 39, 1479–1496.e18 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang, W. et al. Small cell lung cancer tumors and preclinical models display heterogeneity of neuroendocrine phenotypes. Transl. Lung Cancer Res. 7, 32–49 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Balanis, N. G. et al. Pan-cancer convergence to a small-cell neuroendocrine phenotype that shares susceptibilities with hematological malignancies. Cancer Cell 36, 17–34.e17 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang, L. et al. A genetically defined disease model reveals that urothelial cells can initiate divergent bladder cancer phenotypes. Proc. Natl Acad. Sci. USA 117, 563–572 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Thomas, A. et al. Therapeutic targeting of ATR yields durable regressions in small cell lung cancers with high replication stress. Cancer Cell 39, 566–579.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lissa, D. et al. Heterogeneity of neuroendocrine transcriptional states in metastatic small cell lung cancers and patient-derived models. Nat. Commun. 13, 2023 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bebber, C. M. et al. Ferroptosis response segregates small cell lung cancer (SCLC) neuroendocrine subtypes. Nat. Commun. 12, 2048 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu, S. V. et al. IMpower133: gene expression (GE) analysis in long-term survivors (LTS) with ES-SCLC treated with first-line carboplatin and etoposide (CE) ± atezolizumab (atezo) [abstract VP5-2021]. Ann. Oncol. 32, 1063–1065 (2021).

    Article  Google Scholar 

  71. Roper, N. et al. Notch signaling and efficacy of PD-1/PD-L1 blockade in relapsed small cell lung cancer. Nat. Commun. 12, 3880 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nabet, B. Y. et al. Immune heterogeneity in small-cell lung cancer and vulnerability to immune checkpoint blockade. Cancer Cell 42, 429–443.e4 (2024).

    Article  CAS  PubMed  Google Scholar 

  73. Saunders, L. R. et al. A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci. Transl. Med. 7, 302ra136 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Blackhall, F. et al. Efficacy and safety of rovalpituzumab tesirine compared with topotecan as second-line therapy in DLL3-high SCLC: results from the phase 3 TAHOE study. J. Thorac. Oncol. 16, 1547–1558 (2021).

    Article  CAS  PubMed  Google Scholar��

  75. Jaspers, J. E. et al. IL-18-secreting CAR T cells targeting DLL3 are highly effective in small cell lung cancer models. J. Clin. Invest. 133, e166028 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Huehls, A. M., Coupet, T. A. & Sentman, C. L. Bispecific T-cell engagers for cancer immunotherapy. Immunol. Cell Biol. 93, 290–296 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Giffin, M. J. et al. AMG 757, a half-life extended, DLL3-targeted bispecific T-cell engager, shows high potency and sensitivity in preclinical models of small-cell lung cancer. Clin. Cancer Res. 27, 1526–1537 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Paz-Ares, L. et al. Tarlatamab, a first-in-class DLL3-targeted bispecific T-cell engager, in recurrent small-cell lung cancer: an open-label, phase I study. J. Clin. Oncol. 41, 2893–2903 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ahn, M. J. et al. Tarlatamab for patients with previously treated small-cell lung cancer. N. Engl. J. Med. 389, 2063–2075 (2023).

    Article  CAS  PubMed  Google Scholar 

  80. FDA. FDA grants accelerated approval to tarlatamab-dlle for extensive stage small cell lung cancer. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-tarlatamab-dlle-extensive-stage-small-cell-lung-cancer (2024).

  81. Hipp, S. et al. A bispecific DLL3/CD3 IgG-like T-cell engaging antibody induces antitumor responses in small cell lung cancer. Clin. Cancer Res. 26, 5258–5268 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Rudin, C. M. et al. Emerging therapies targeting the delta-like ligand 3 (DLL3) in small cell lung cancer. J. Hematol. Oncol. 16, 66 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hafezi, S. & Rahmani, M. Targeting BCL-2 in cancer: advances, challenges, and perspectives. Cancers 13, 1292 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Valko, Z. et al. Dual targeting of BCL-2 and MCL-1 in the presence of BAX breaks venetoclax resistance in human small cell lung cancer. Br. J. Cancer 128, 1850–1861 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Khan, S. et al. Co-targeting BCL-XL and MCL-1 with DT2216 and AZD8055 synergistically inhibit small-cell lung cancer growth without causing on-target toxicities in mice. Cell Death Discov. 9, 1 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Paik, P. K. et al. A phase II study of obatoclax mesylate, a Bcl-2 antagonist, plus topotecan in relapsed small cell lung cancer. Lung Cancer 74, 481–485 (2011).

    Article  PubMed  Google Scholar 

  87. Rudin, C. M. et al. Randomized phase II study of carboplatin and etoposide with or without the bcl-2 antisense oligonucleotide oblimersen for extensive-stage small-cell lung cancer: CALGB 30103. J. Clin. Oncol. 26, 870–876 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Chalishazar, M. D. et al. MYC-driven small-cell lung cancer is metabolically distinct and vulnerable to arginine depletion. Clin. Cancer Res. 25, 5107–5121 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Han, H. et al. Small-molecule MYC inhibitors suppress tumor growth and enhance immunotherapy. Cancer Cell 36, 483–497.e15 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Demma, M. J. et al. Omomyc reveals new mechanisms to inhibit the MYC oncogene. Mol. Cell. Biol. 39, e00248-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Gavory, G. et al. Identification of MRT-2359 a potent, selective and orally bioavailable GSPT1-directed molecular glue degrader (MGD) for the treatment of cancers with Myc-induced translational addiction [abstract]. Cancer Res. 82 (Suppl. 12), 3929 (2022).

    Article  Google Scholar 

  92. Heeke, S. et al. Tumor- and circulating-free DNA methylation identifies clinically relevant small cell lung cancer subtypes. Cancer Cell 42, 225–237.e5 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Huang, Y. H. et al. POU2F3 is a master regulator of a tuft cell-like variant of small cell lung cancer. Genes. Dev. 32, 915–928 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chiappori, A. A. et al. A randomized phase II study of linsitinib (OSI-906) versus topotecan in patients with relapsed small-cell lung cancer. Oncologist 21, 1163–1164 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Belani, C. P. et al. Vismodegib or cixutumumab in combination with standard chemotherapy for patients with extensive-stage small cell lung cancer: a trial of the ECOG-ACRIN Cancer Research Group (E1508). Cancer 122, 2371–2378 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Pietanza, M. C. et al. Randomized, double-blind, phase II study of temozolomide in combination with either veliparib or placebo in patients with relapsed-sensitive or refractory small-cell lung cancer. J. Clin. Oncol. 36, 2386–2394 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Farago, A. F. et al. Combination olaparib and temozolomide in relapsed small-cell lung cancer. Cancer Discov. 9, 1372–1387 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. McColl, K. et al. Reciprocal expression of INSM1 and YAP1 defines subgroups in small cell lung cancer. Oncotarget 8, 73745–73756 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Horie, M., Saito, A., Ohshima, M., Suzuki, H. I. & Nagase, T. YAP and TAZ modulate cell phenotype in a subset of small cell lung cancer. Cancer Sci. 107, 1755–1766 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wooten, D. J. et al. Systems-level network modeling of small cell lung cancer subtypes identifies master regulators and destabilizers. PLoS Comput. Biol. 15, e1007343 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Peifer, M. et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat. Genet. 44, 1104–1110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Parker, S. C. et al. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Proc. Natl Acad. Sci. USA 110, 17921–17926 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pozo, K. et al. ASCL1, NKX2-1, and PROX1 co-regulate subtype-specific genes in small-cell lung cancer. iScience 24, 102953 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576.e16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kim, H. J., Cantor, H. & Cosmopoulos, K. Overcoming immune checkpoint blockade resistance via EZH2 inhibition. Trends Immunol. 41, 948–963 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Poirier, J. T. et al. DNA methylation in small cell lung cancer defines distinct disease subtypes and correlates with high expression of EZH2. Oncogene 34, 5869–5878 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kirk, N. A., Kim, K. B. & Park, K. S. Effect of chromatin modifiers on the plasticity and immunogenicity of small-cell lung cancer. Exp. Mol. Med. 54, 2118–2127 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mahadevan, N. R. et al. Intrinsic immunogenicity of small cell lung carcinoma revealed by its cellular plasticity. Cancer Discov. 11, 1952–1969 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Burr, M. L. et al. An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell 36, 385–401.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Augert, A. et al. Targeting NOTCH activation in small cell lung cancer through LSD1 inhibition. Sci. Signal. 12, eaau2922 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mohammad, H. P. et al. A DNA hypomethylation signature predicts antitumor activity of LSD1 inhibitors in SCLC. Cancer Cell 28, 57–69 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Bauer, T. M. et al. Phase I, open-label, dose-escalation study of the safety, pharmacokinetics, pharmacodynamics, and efficacy of GSK2879552 in relapsed/refractory SCLC. J. Thorac. Oncol. 14, 1828–1838 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Hiatt, J. B. et al. Inhibition of LSD1 with bomedemstat sensitizes small cell lung cancer to immune checkpoint blockade and T-cell killing. Clin. Cancer Res. 28, 4551–4564 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shukla, V. et al. ASXL3 is a novel pluripotency factor in human respiratory epithelial cells and a potential therapeutic target in small cell lung cancer. Cancer Res. 77, 6267–6281 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhao, Z. et al. PAX9 determines epigenetic state transition and cell fate in cancer. Cancer Res. 81, 4696–4708 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chao, Y. L. & Pecot, C. V. Targeting epigenetics in lung cancer. Cold Spring Harb. Perspect. Med. 11, a038000 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med. 3, 75ra26 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Ziller, M. J. et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477–481 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Varley, K. E. et al. Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res. 23, 555–567 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rubin, M. A., Bristow, R. G., Thienger, P. D., Dive, C. & Imielinski, M. Impact of lineage plasticity to and from a neuroendocrine phenotype on progression and response in prostate and lung cancers. Mol. Cell 80, 562–577 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Stine, Z. E., Walton, Z. E., Altman, B. J., Hsieh, A. L. & Dang, C. V. MYC, metabolism, and cancer. Cancer Discov. 5, 1024–1039 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cargill, K. R., Hasken, W. L., Gay, C. M. & Byers, L. A. Alternative energy: breaking down the diverse metabolic features of lung cancers. Front. Oncol. 11, 757323 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. van der Lee, I. et al. Single-agent gemcitabine in patients with resistant small-cell lung cancer. Ann. Oncol. 12, 557–561 (2001).

    Article  PubMed  Google Scholar 

  126. Cargill, K. R. et al. Targeting MYC-enhanced glycolysis for the treatment of small cell lung cancer. Cancer Metab. 9, 33 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Mollaoglu, G. et al. MYC drives progression of small cell lung cancer to a variant neuroendocrine subtype with vulnerability to aurora kinase inhibition. Cancer Cell 31, 270–285 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pedersen, S. et al. Identifying metabolic alterations in newly diagnosed small cell lung cancer patients. Metab. Open. 12, 100127 (2021).

    Article  CAS  Google Scholar 

  129. Chen, H. Z. et al. Genomic and transcriptomic characterization of relapsed SCLC through rapid research autopsy. JTO Clin. Res. Rep. 2, 100164 (2021).

    PubMed  PubMed Central  Google Scholar 

  130. Gardner, E. E. et al. Chemosensitive relapse in small cell lung cancer proceeds through an EZH2-SLFN11 axis. Cancer Cell 31, 286–299 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lim, J. S. et al. Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer. Nature 545, 360–364 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Abdo Hassan, W. et al. Notch1 controls cell chemoresistance in small cell lung carcinoma cells. Thorac. Cancer 7, 123–128 (2016).

    Article  Google Scholar 

  133. Kim, J. W., Ko, J. H. & Sage, J. DLL3 regulates Notch signaling in small cell lung cancer. iScience 25, 105603 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ventola, C. L. Cancer immunotherapy, part 1: current strategies and agents. Pharm. Ther. 42, 375–383 (2017).

    Google Scholar 

  135. Iclozan, C., Antonia, S., Chiappori, A., Chen, D. T. & Gabrilovich, D. Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. Cancer Immunol. Immunother. 62, 909–918 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. George, J. et al. Genomic amplification of CD274 (PD-L1) in small-cell lung cancer. Clin. Cancer Res. 23, 1220–1226 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Hamilton, G. & Rath, B. Immunotherapy for small cell lung cancer: mechanisms of resistance. Expert. Opin. Biol. Ther. 19, 423–432 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Acheampong, E. et al. Tumour PD-L1 expression in small-cell lung cancer: a systematic review and meta-analysis. Cells 9, 2393 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pavan, A. et al. Immunotherapy in small-cell lung cancer: from molecular promises to clinical challenges. J. Immunother. Cancer 7, 205 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Paz-Ares, L. et al. Durvalumab ± tremelimumab + platinum-etoposide in extensive-stage small cell lung cancer (CASPIAN): outcomes by PD-L1 expression and tissue tumor mutational burden. Clin. Cancer Res. 30, 824–835 (2024).

    Article  CAS  PubMed  Google Scholar 

  141. Peters, S. et al. Tremelimumab (T) + durvalumab (D) + chemotherapy (CT) in 1L metastatic NSCLC: outcomes by blood tumor mutational burden (bTMB) in POSEIDON [abstract]. Cancer Res. 83 (Suppl. 8), CT080 (2023).

    Article  Google Scholar 

  142. Rudin, C. M. et al. Exploratory biomarker analysis of the phase 3 KEYNOTE-604 study of pembrolizumab plus etoposide for extensive-stage SCLC [abstract]. J. Clin. Oncol. 41 (Suppl. 16), 8503 (2023).

    Article  Google Scholar 

  143. Reck, M. et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensive-disease-small-cell lung cancer: results from a randomized, double-blind, multicenter phase 2 trial. Ann. Oncol. 24, 75–83 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Reck, M. et al. Phase III randomized trial of ipilimumab plus etoposide and platinum versus placebo plus etoposide and platinum in extensive-stage small-cell lung cancer. J. Clin. Oncol. 34, 3740–3748 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Paz-Ares, L. et al. Durvalumab plus platinum-etoposide versus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial. Lancet 394, 1929–1939 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Ott, P. A. et al. Pembrolizumab in patients with extensive-stage small-cell lung cancer: results from the phase Ib KEYNOTE-028 study. J. Clin. Oncol. 35, 3823–3829 (2017).

    Article  CAS  PubMed  Google Scholar 

  147. Rudin, C. M. et al. Pembrolizumab or placebo plus etoposide and platinum as first-line therapy for extensive-stage small-cell lung cancer: randomized, double-blind, phase III KEYNOTE-604 study. J. Clin. Oncol. 38, 2369–2379 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Rudin, C. M. et al. SKYSCRAPER-02: tiragolumab in combination with atezolizumab plus chemotherapy in untreated extensive-stage small-cell lung cancer. J. Clin. Oncol. 42, 324–335 (2020).

    Article  Google Scholar 

  149. Senan, S. et al. Design and rationale for a phase III, randomized, placebo-controlled trial of durvalumab with or without tremelimumab after concurrent chemoradiotherapy for patients with limited-stage small-cell lung cancer: the ADRIATIC study. Clin. Lung Cancer 21, e84–e88 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Spigel, D. R. et al. ADRIATIC: Durvalumab (D) as consolidation treatment (tx) for patients (pts) with limited-stage small-cell lung cancer (LS-SCLC)]abstract]. J. Clin. Oncol. 42 (Suppl. 17), LBA5 (2024).

    Article  Google Scholar 

  151. Spigel, D. R. et al. Five-year survival outcomes from the PACIFIC trial: durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. J. Clin. Oncol. 40, 1301–1311 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Cheng, Y. et al. Benmelstobart with anlotinib plus chemotherapy as first-line therapy for ES-SCLC: a randomized, double-blind, phase III trial. J. Thorac. Oncol. 18, S44 (2023).

    Article  Google Scholar 

  153. Ohe, Y. et al. BEAT-SC: a randomized phase III study of bevacizumab or placebo in combination with atezolizumab and platinum-based chemotherapy in patients with extensive-stage small cell lung cancer (ES-SCLC) [abstract]. J. Clin. Oncol. 42 (Suppl. 16), 8001 (2024).

    Article  Google Scholar 

  154. Sen, T. et al. Combination treatment of the oral CHK1 inhibitor, SRA737, and low-dose gemcitabine enhances the effect of programmed death ligand 1 blockade by modulating the immune microenvironment in SCLC. J. Thorac. Oncol. 14, 2152–2163 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sen, T. et al. Targeting AXL and mTOR pathway overcomes primary and acquired resistance to WEE1 inhibition in small-cell lung cancer. Clin. Cancer Res. 23, 6239–6253 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Sen, T. et al. Targeting DNA damage repair in small cell lung cancer and the biomarker landscape. Transl. Lung Cancer Res. 7, 50–68 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Taniguchi, H. et al. Targeted therapies and biomarkers in small cell lung cancer. Front. Oncol. 10, 741 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Taniguchi, H. et al. WEE1 inhibition enhances the antitumor immune response to PD-L1 blockade by the concomitant activation of STING and STAT1 pathways in SCLC. Cell Rep. 39, 110814 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Sen, T. et al. Targeting DNA damage response promotes antitumor immunity through sting-mediated T-cell activation in small cell lung cancer. Cancer Discov. 9, 646–661 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Jones, R. et al. A phase I/II trial of oral SRA737 (a Chk1 Inhibitor) given in combination with low-dose gemcitabine in patients with advanced cancer. Clin. Cancer Res. 29, 331–340 (2023).

    Article  CAS  PubMed  Google Scholar 

  161. Qu, T., Li, B. & Wang, Y. Targeting CD47/SIRPα as a therapeutic strategy, where we are and where we are headed. Biomark. Res. 10, 20 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Tomita, Y. et al. In small cell lung cancer patients treated with RRx-001, a downregulator of CD47, decreased expression of PD-L1 on circulating tumor cells significantly correlates with clinical benefit. Transl. Lung Cancer Res. 10, 274–278 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Yamada, T. et al. Genetically engineered humanized anti-ganglioside GM2 antibody against multiple organ metastasis produced by GM2-expressing small-cell lung cancer cells. Cancer Sci. 102, 2157–2163 (2011).

    Article  CAS  PubMed  Google Scholar 

  164. Taniguchi, H. et al. Role of CD38 in anti-tumor immunity of small cell lung cancer. Front. Immunol. 15, 1348982 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Rudin, C. M. et al. Clinical benefit from immunotherapy in patients with SCLC is associated with tumor capacity for antigen presentation. J. Thorac. Oncol. 18, 1222–1232 (2023).

    Article  CAS  PubMed  Google Scholar 

  166. Dowlati, A. et al. Immune checkpoint blockade outcome in small-cell lung cancer and its relationship with retinoblastoma mutation status and function. JCO Precis. Oncol. 6, e2200257 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Wollenzien, H., Afeworki Tecleab, Y., Szczepaniak-Sloane, R., Restaino, A. & Kareta, M. S. Single-cell evolutionary analysis reveals drivers of plasticity and mediators of chemoresistance in small cell lung cancer. Mol. Cancer Res. 21, 892–907 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Tian, Y. et al. Single-cell transcriptomic profiling reveals the tumor heterogeneity of small-cell lung cancer. Signal. Transduct. Target. Ther. 7, 346 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Stewart, C. A. et al. Single-cell analyses reveal increased intratumoral heterogeneity after the onset of therapy resistance in small-cell lung cancer. Nat. Cancer 1, 423–436 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Dowlati, A. et al. Clinical correlation of extensive-stage small-cell lung cancer genomics. Ann. Oncol. 27, 642–647 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Wildey, G. et al. Retinoblastoma expression and targeting by CDK4/6 inhibitors in small cell lung cancer. Mol. Cancer Ther. 22, 264–273 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Coleman, N., Zhang, B., Byers, L. A. & Yap, T. A. The role of Schlafen 11 (SLFN11) as a predictive biomarker for targeting the DNA damage response. Br. J. Cancer 124, 857–859 (2021).

    Article  CAS  PubMed  Google Scholar 

  173. Zoppoli, G. et al. Putative DNA/RNA helicase Schlafen-11 (SLFN11) sensitizes cancer cells to DNA-damaging agents. Proc. Natl Acad. Sci. USA 109, 15030–15035 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Lok, B. H. et al. PARP inhibitor activity correlates with SLFN11 expression and demonstrates synergy with temozolomide in small cell lung cancer. Clin. Cancer Res. 23, 523–535 (2017).

    Article  CAS  PubMed  Google Scholar 

  175. Abdel Karim, N. F. et al. SWOG S1929: phase II randomized study of maintenance atezolizumab (A) versus atezolizumab + talazoparib (AT) in patients with SLFN11 positive extensive stage small cell lung cancer (ES-SCLC) [abstract]. J. Clin. Oncol. 41 (Suppl. 16), 8504 (2023).

    Article  Google Scholar 

  176. Ali, G. et al. Prevalence of delta-like protein 3 in a consecutive series of surgically resected lung neuroendocrine neoplasms. Front. Oncol. 11, 729765 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Wermke, M. et al. First-in-human dose-escalation trial of BI 764532, a delta-like ligand 3 (DLL3)/CD3 IgG-like T-cell engager in patients (pts) with DLL3-positive (DLL3+) small-cell lung cancer (SCLC) and neuroendocrine carcinoma (NEC) [abstract]. J. Clin. Oncol. 41 (Suppl. 16), 8502 (2023).

    Article  Google Scholar 

  178. Johnson, M. L. et al. Interim results of an ongoing phase 1/2a study of HPN328, a tri-specific, half-life extended, DLL3-targeting, T-cell engager, in patients with small cell lung cancer and other neuroendocrine cancers [abstract]. J. Clin. Oncol. 40 (Suppl. 16), 8566 (2022).

    Article  Google Scholar 

  179. Wiedemeyer, W. R. et al. ABBV-011, a novel, calicheamicin-based antibody-drug conjugate, targets SEZ6 to eradicate small cell lung cancer tumors. Mol. Cancer Ther. 21, 986–998 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Morgensztern, D. et al. First-in-human study of ABBV-011, a seizure-related homolog protein 6 (SEZ6)–targeting antibody-drug conjugate, in patients with small cell lung cancer [abstract]. J. Clin. Oncol. 41 (Suppl. 16), 3002 (2023).

    Article  Google Scholar 

  181. Lehman, J. M. et al. Somatostatin receptor 2 signaling promotes growth and tumor survival in small-cell lung cancer. Int. J. Cancer 144, 1104–1114 (2019).

    Article  CAS  PubMed  Google Scholar 

  182. Dowlati, A. et al. Sacituzumab govitecan (SG) as second-line (2L) treatment for extensive stage small cell lung cancer (ES-SCLC): preliminary results from the phase II TROPiCS-03 basket trial [abstract 1990MO]. Ann. Oncol. 34 (Suppl. 2), S1061–S1062 (2023).

    Article  Google Scholar 

  183. Johnson, M. et al. Ifinatamab deruxtecan (I-DXd; DS-7300) in patients with refractory SCLC: a subgroup analysis of a phase 1/2 study. J. Thorac. Oncol. 18, S34–S55 (2023).

    Article  Google Scholar 

  184. Hou, J. M. et al. Circulating tumor cells, enumeration and beyond. Cancers 2, 1236–1250 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Hou, J. M. et al. Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J. Clin. Oncol. 30, 525–532 (2012).

    Article  PubMed  Google Scholar 

  186. Byers, L. A. & Rudin, C. M. Small cell lung cancer: where do we go from here? Cancer 121, 664–672 (2015).

    Article  CAS  PubMed  Google Scholar 

  187. Hodgkinson, C. L. et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat. Med. 20, 897–903 (2014).

    Article  CAS  PubMed  Google Scholar 

  188. Pizzutilo, E. G. et al. Liquid biopsy for small cell lung cancer either de novo or transformed: systematic review of different applications and meta-analysis. Cancers 13, 2265 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. De Luca, A. et al. Promising role of circulating tumor cells in the management of SCLC. Cancers 13, 2029 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Mohan, S. et al. Profiling of circulating free DNA using targeted and genome-wide sequencing in patients with SCLC. J. Thorac. Oncol. 15, 216–230 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Devarakonda, S. et al. Circulating tumor DNA profiling in small-cell lung cancer identifies potentially targetable alterations. Clin. Cancer Res. 25, 6119–6126 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Nong, J. et al. Author correction: Circulating tumor DNA analysis depicts subclonal architecture and genomic evolution of small cell lung cancer. Nat. Commun. 10, 552 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Kilgour, E., Rothwell, D. G., Brady, G. & Dive, C. Liquid biopsy-based biomarkers of treatment response and resistance. Cancer Cell 37, 485–495 (2020).

    Article  CAS  PubMed  Google Scholar 

  194. Almodovar, K. et al. Longitudinal cell-free DNA analysis in patients with small cell lung cancer reveals dynamic insights into treatment efficacy and disease relapse. J. Thorac. Oncol. 13, 112–123 (2018).

    Article  CAS  PubMed  Google Scholar 

  195. Church, M., Carter, L. & Blackhall, F. Liquid biopsy in small cell lung cancer – a route to improved clinical care? Cells 9, 2586 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Chemi, F. et al. cfDNA methylome profiling for detection and subtyping of small cell lung cancers. Nat. Cancer 3, 1260–1270 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Tivey, A., Church, M., Rothwell, D., Dive, C. & Cook, N. Circulating tumour DNA – looking beyond the blood. Nat. Rev. Clin. Oncol. 19, 600–612 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Tong, L. et al. Tumor-derived DNA from pleural effusion supernatant as a promising alternative to tumor tissue in genomic profiling of advanced lung cancer. Theranostics 9, 5532–5541 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Mondelo-Macía, P. et al. Current status and future perspectives of liquid biopsy in small cell lung cancer. Biomedicines 9, 48 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Nong, J. et al. Circulating tumor DNA analysis depicts subclonal architecture and genomic evolution of small cell lung cancer. Nat. Commun. 9, 3114 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Iacobuzio-Donahue, C. A. et al. Cancer biology as revealed by the research autopsy. Nat. Rev. Cancer 19, 686–697 (2019).

    Article  CAS  PubMed  Google Scholar 

  203. Megyesfalvi, Z. et al. Unfolding the secrets of small cell lung cancer progression: novel approaches and insights through rapid autopsies. Cancer Cell 41, 1535–1540 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Jereczek, B. et al. Autopsy findings in small cell lung cancer. Neoplasma 43, 133–137 (1996).

    CAS  PubMed  Google Scholar 

  205. Thomas, A. et al. Durvalumab in combination with olaparib in patients with relapsed SCLC: results from a phase II study. J. Thorac. Oncol. 14, 1447–1457 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Drapkin, B. J. et al. Genomic and functional fidelity of small cell lung cancer patient-derived xenografts. Cancer Discov. 8, 600–615 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Lababede, O. & Meziane, M. A. The eighth edition of TNM staging of lung cancer: reference chart and diagrams. Oncologist 23, 844–848 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of manuscript preparation.

Corresponding authors

Correspondence to Triparna Sen or Abdul Rafeh Naqash.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks A. Dowlati and J. Minna for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, T., Takahashi, N., Chakraborty, S. et al. Emerging advances in defining the molecular and therapeutic landscape of small-cell lung cancer. Nat Rev Clin Oncol (2024). https://doi.org/10.1038/s41571-024-00914-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41571-024-00914-x

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer