Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Towards equitable AI in oncology

Abstract

Artificial intelligence (AI) stands at the threshold of revolutionizing clinical oncology, with considerable potential to improve early cancer detection and risk assessment, and to enable more accurate personalized treatment recommendations. However, a notable imbalance exists in the distribution of the benefits of AI, which disproportionately favour those living in specific geographical locations and in specific populations. In this Perspective, we discuss the need to foster the development of equitable AI tools that are both accurate in and accessible to a diverse range of patient populations, including those in low-income to middle-income countries. We also discuss some of the challenges and potential solutions in attaining equitable AI, including addressing the historically limited representation of diverse populations in existing clinical datasets and the use of inadequate clinical validation methods. Additionally, we focus on extant sources of inequity including the type of model approach (such as deep learning, and feature engineering-based methods), the implications of dataset curation strategies, the need for rigorous validation across a variety of populations and settings, and the risk of introducing contextual bias that comes with developing tools predominantly in high-income countries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optimizing equity in AI model development for oncology.

Similar content being viewed by others

References

  1. Luchini, C., Pea, A. & Scarpa, A. Artificial intelligence in oncology: current applications and future perspectives. Br. J. Cancer 126, 4–9 (2022).

    Article  PubMed  Google Scholar 

  2. Bera, K., Schalper, K. A., Rimm, D. L., Velcheti, V. & Madabhushi, A. Artificial intelligence in digital pathology – new tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 16, 703–715 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bera, K., Braman, N., Gupta, A., Velcheti, V. & Madabhushi, A. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat. Rev. Clin. Oncol. 19, 132–146 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Svoboda, E. Artificial intelligence is improving the detection of lung cancer. Nature 587, S20–S22 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Bulten, W. et al. Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge. Nat. Med 28, 154–163 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shen, Y. et al. Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams. Nat. Commun. 12, 5645 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Diamant, A., Chatterjee, A., Vallières, M., Shenouda, G. & Seuntjens, J. Deep learning in head & neck cancer outcome prediction. Sci. Rep. 9, 2764 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Boehm, K. M. et al. Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer. Nat. Cancer 3, 723–733 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Johnson, K. B. et al. Precision medicine, AI, and the future of personalized health care. Clin. Transl. Sci. 14, 86–93 (2021).

    Article  PubMed  Google Scholar 

  10. Boulware, L. E., Purnell, T. S. & Mohottige, D. Systemic kidney transplant inequities for black individuals: examining the contribution of racialized kidney function estimating equations. JAMA Netw. Open 4, e2034630 (2021).

    Article  PubMed  Google Scholar 

  11. Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diversity in human genetic studies. Cell 177, 26–31 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Westergaard, D., Moseley, P., Sørup, F. K. H., Baldi, P. & Brunak, S. Population-wide analysis of differences in disease progression patterns in men and women. Nat. Commun. 10, 666 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Leslie, D., Mazumder, A., Peppin, A., Wolters, M. K. & Hagerty, A. Does “AI” stand for augmenting inequality in the era of covid-19 healthcare? BMJ 372, n304 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Seyyed-Kalantari, L., Zhang, H., McDermott, M. B. A., Chen, I, Y. & Ghassemi, M. Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nat. Med. 27, 2176–2182 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Obermeyer, Z., Powers, B., Vogeli, C. & Mullainathan, S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 366, 447–453 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Buolamwini, J. & Gebru, T. Gender shades: intersectional accuracy disparities in commercial gender classification. Proc. Mach. Learn. Res. 81, 77–91 (2018).

    Google Scholar 

  17. Ibrahim, S. A. & Pronovost, P. J. Diagnostic errors, health disparities, and artificial intelligence: a combination for health or harm? JAMA Health Forum 2, e212430 (2021).

    Article  PubMed  Google Scholar 

  18. Gee, G. C. & Ford, C. L. Structural racism and health inequities: old issues, new directions. Du Bois Rev. 8, 115–132 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Florez, N. et al. Lung cancer in women: the past, present, and future. Clin. Lung Cancer 25, 1–8 (2024).

    Article  PubMed  Google Scholar 

  20. World Health Organization. Ethics and governance of artificial intelligence for health: WHO guidance. World Health Organization www.who.int/publications-detail-redirect/9789240029200 (2021).

  21. Kaplan, J. B. & Bennett, T. Use of race and ethnicity in biomedical publication. JAMA 289, 2709–2716 (2003).

    Article  PubMed  Google Scholar 

  22. Flanagin, A., Frey, T., Christiansen, S. L. & Bauchner, H. The reporting of race and ethnicity in medical and science journals: comments invited. JAMA 325, 1049–1052 (2021).

    Article  PubMed  Google Scholar 

  23. Flanagin, A., Frey, T., Christiansen, S. L. & AMA Manual of Style Committee. Updated guidance on the reporting of race and ethnicity in medical and science journals. JAMA 326, 621–627 (2021).

    Article  PubMed  Google Scholar 

  24. Lu, C., Ahmed, R., Lamri, A. & Anand, S. S. Use of race, ethnicity, and ancestry data in health research. PLOS Glob. Public Health 2, e0001060 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Smith, C. J., Minas, T. Z. & Ambs, S. Analysis of tumor biology to advance cancer health disparity research. Am. J. Pathol. 188, 304–316 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bhargava, H. K. et al. Computationally derived image signature of stromal morphology is prognostic of prostate cancer recurrence following prostatectomy in African American patients. Clin. Cancer Res 26, 1915–1923 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gong, J. et al. Genetic and biological drivers of prostate cancer disparities in Black men. Nat. Rev. Urol. 21, 274–289 (2024).

    Article  CAS  PubMed  Google Scholar 

  28. Haiman, C. A. et al. Ethnic and racial differences in the smoking-related risk of lung cancer. N. Engl. J. Med. 354, 333–342 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Chen, R. J. et al. Algorithmic fairness in artificial intelligence for medicine and healthcare. Nat. Biomed. Eng. 7, 719–742 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Siala, H. & Wang, Y. SHIFTing artificial intelligence to be responsible in healthcare: a systematic review. Soc. Sci. Med 296, 114782 (2022).

    Article  PubMed  Google Scholar 

  31. Wang, X. et al. ChatGPT: promise and challenges for deployment in low- and middle-income countries. Lancet Reg. Health West Pac. 41, 100905 (2023).

    PubMed  PubMed Central  Google Scholar 

  32. Clusmann, J. et al. The future landscape of large language models in medicine. Commun. Med 3, 141 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  33. International Atomic Energy Agency. IMAGINE – IAEA Medical imAGIng and Nuclear mEdicine global resouces database. Human Health Campus humanhealth.iaea.org/HHW/DBStatistics/IMAGINE.html (2010–2016).

  34. Mollura, D. J. et al. Artificial intelligence in low- and middle-income countries: innovating global health radiology. Radiology 297, 513–520 (2020).

    Article  PubMed  Google Scholar 

  35. Fletcher, R. R., Nakeshimana, A. & Olubeko, O. Addressing fairness, bias, and appropriate use of artificial intelligence and machine learning in global health. Front. Artif. Intell. 3, 561802 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Anazodo, U. C., Adewole, M. & Dako, F. AI for population and global health in radiology. Radiol. Artif. Intell. 4, e220107 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Frija, G. et al. How to improve access to medical imaging in low- and middle-income countries? eClinicalMedicine 38, 101034 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hilabi, B. S. et al. Impact of magnetic resonance imaging on healthcare in low- and middle-income countries. Cureus 15, e37698 (2023).

    PubMed  PubMed Central  Google Scholar 

  39. Stead, W. W. Clinical implications and challenges of artificial intelligence and deep learning. JAMA 320, 1107–1108 (2018).

    Article  PubMed  Google Scholar 

  40. Sarker, I. H. Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput. Sci. 2, 420 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yang, S., Zhu, F., Ling, X., Liu, Q. & Zhao, P. Intelligent health care: applications of deep learning in computational medicine. Front. Genet 12, 607471 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hassija, V. et al. Interpreting black-box models: a review on explainable artificial intelligence. Cogn. Comput. 16, 45–74 (2024).

    Article  Google Scholar 

  43. Amann, J., Blasimme, A., Vayena, E., Frey, D. & Madai, V. I. Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med. Inform. Decis. Mak. 20, 310 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gichoya, J. W. et al. AI recognition of patient race in medical imaging: a modelling study. Lancet Digit. Health 4, e406–e414 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Norori, N., Hu, Q., Aellen, F. M., Faraci, F. D. & Tzovara, A. Addressing bias in big data and AI for health care: a call for open science. Patterns 2, 100347 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sarker, I. H. Data science and analytics: an overview from data-driven smart computing, decision-making and applications perspective. SN Comput. Sci. 2, 377 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Both, C., Dehmamy, N., Yu, R. & Barabási, A.-L. Accelerating network layouts using graph neural networks. Nat. Commun. 14, 1560 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Verdonck, T., Baesens, B., Óskarsdóttir, M. & vanden Broucke, S. Special issue on feature engineering editorial. Mach. Learn https://doi.org/10.1007/s10994-021-06042-2 (2021).

    Article  Google Scholar 

  49. Roe, K. D. et al. Feature engineering with clinical expert knowledge: a case study assessment of machine learning model complexity and performance. PLoS ONE 15, e0231300 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fink, O. et al. Potential, challenges and future directions for deep learning in prognostics and health management applications. Eng. Appl. Artif. Intell. 92, 103678 (2020).

    Article  Google Scholar 

  51. Alilou, M. et al. Quantitative vessel tortuosity: a potential CT imaging biomarker for distinguishing lung granulomas from adenocarcinomas. Sci. Rep. 8, 15290 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Aguilar-Cazares, D. et al. Contribution of angiogenesis to inflammation and cancer. Front. Oncol. 9, 1399 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Goel, S., Wong, A. H.-K. & Jain, R. K. Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harb. Perspect. Med 2, a006486 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Viallard, C. & Larrivée, B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 20, 409–426 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Mahdavi, M. et al. Hybrid feature engineering of medical data via variational autoencoders with triplet loss: a COVID-19 prognosis study. Sci. Rep. 13, 2827 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Abdul-Rahman, T. et al. Inaccessibility and low maintenance of medical data archive in low-middle income countries: mystery behind public health statistics and measures. J. Infect. Public Health 16, 1556–1561 (2023).

    Article  PubMed  Google Scholar 

  57. Janjua, Z. H., Kerins, D., O’Flynn, B. & Tedesco, S. Knowledge-driven feature engineering to detect multiple symptoms using ambulatory blood pressure monitoring data. Comput. Methods Prog. Biomed. 217, 106638 (2022).

    Article  Google Scholar 

  58. de Hond, A. A. H. et al. Perspectives on validation of clinical predictive algorithms. NPJ Digit Med 6, 86 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  59. European Society of Radiology White paper on imaging biomarkers. Insights Imaging. 1, 42–45 (2010).

    Article  Google Scholar 

  60. Gillies, R. J., Kinahan, P. E. & Hricak, H. Radiomics: images are more than pictures, they are data. Radiology 278, 563–577 (2016).

    Article  PubMed  Google Scholar 

  61. Celi, L. A. et al. Sources of bias in artificial intelligence that perpetuate healthcare disparities – a global review. PLOS Digit. Health 1, e0000022 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Katkade, V. B., Sanders, K. N. & Zou, K. H. Real world data: an opportunity to supplement existing evidence for the use of long-established medicines in health care decision making. J. Multidiscip. Health. 11, 295–304 (2018).

    Article  Google Scholar 

  63. Lim, L. & Lee, H.-C. Open datasets in perioperative medicine: a narrative review. Anesth. Pain. Med 18, 213–219 (2023).

    Article  Google Scholar 

  64. Kondylakis, H. et al. Data infrastructures for AI in medical imaging: a report on the experiences of five EU projects. Eur. Radiol. Exp. 7, 20 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Esteva, A. et al. Prostate cancer therapy personalization via multi-modal deep learning on randomized phase III clinical trials. NPJ Digit. Med 5, 71 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Arora, A. et al. The value of standards for health datasets in artificial intelligence-based applications. Nat. Med 29, 2929–2938 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wahid, K. A. et al. Artificial intelligence for radiation oncology applications using public datasets. Semin. Radiat. Oncol. 32, 400–414 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Krishnankutty, B., Bellary, S., Kumar, B. N. & Moodahadu, L. S. Data management in clinical research: an overview. Indian J. Pharm. 44, 168–172 (2012).

    Article  Google Scholar 

  69. Kim, H.-S., Lee, S. & Kim, J. H. Real-world evidence versus randomized controlled trial: clinical research based on electronic medical records. J. Korean Med. Sci. 33, e213 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Tsopra, R. et al. A framework for validating AI in precision medicine: considerations from the European ITFoC consortium. BMC Med. Inform. Decis. Mak. 21, 274 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Nazha, B., Mishra, M., Pentz, R. & Owonikoko, T. K. Enrollment of racial minorities in clinical trials: old problem assumes new urgency in the age of immunotherapy. Am. Soc. Clin. Oncol. Educ. Book 39, 3–10 (2019).

    Article  PubMed  Google Scholar 

  72. Ciecierski-Holmes, T., Singh, R., Axt, M., Brenner, S. & Barteit, S. Artificial intelligence for strengthening healthcare systems in low- and middle-income countries: a systematic scoping review. NPJ Digit. Med 5, 162 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Alemayehu, C., Mitchell, G. & Nikles, J. Barriers for conducting clinical trials in developing countries – a systematic review. Int. J. Equity Health 17, 37 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mbuagbaw, L., Thabane, L., Ongolo-Zogo, P. & Lang, T. The challenges and opportunities of conducting a clinical trial in a low resource setting: the case of the Cameroon mobile phone SMS (CAMPS) trial, an investigator initiated trial. Trials 12, 145 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zehra, T. Overcoming digital disparity. The Pathologist thepathologist.com/inside-the-lab/overcoming-the-digital-disparity (2023).

  76. Phiri, P. Opportunities and challenges of conducting clinical research in low- and middle-income countries (LMICs). Your Say yoursay.plos.org/2023/06/opportunities-and-challenges-of-conducting-clinical-research-in-low-and-middle-income-countries-lmics/ (2023).

  77. Imam, A. et al. Conducting clinical research in a resource-constrained setting: lessons from a longitudinal cohort study in The Gambia. BMJ Glob. Health 6, e006419 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hashmi, S. K., Geara, F., Mansour, A. & Aljurf, M. in The Comprehensive Cancer Center: Development, Integration, and Implementation (eds Aljurf, M., Majhail, N. S., Koh, M. B. C., Kharfan-Dabaja, M. A. & Chao, N. J.) 173–185 (Springer, 2022).

  79. Reddy, H., Joshi, S., Joshi, A. & Wagh, V. A critical review of global digital divide and the role of technology in healthcare. Cureus 14, e29739 (2022).

    PubMed  PubMed Central  Google Scholar 

  80. Muehlematter, U. J., Bluethgen, C. & Vokinger, K. N. FDA-cleared artificial intelligence and machine learning-based medical devices and their 510(k) predicate networks. Lancet Digit. Health 5, e618–e626 (2023).

    Article  CAS  PubMed  Google Scholar 

  81. Benjamens, S., Dhunnoo, P. & Meskó, B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit. Med 3, 118 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Paige. Paige receives first ever FDA approval for AI product in digital pathology. Paige paige.ai/paige-receives-first-ever-fda-approval-for-ai-product-in-digital-pathology/ (2021).

  83. Raciti, P. et al. Novel artificial intelligence system increases the detection of prostate cancer in whole slide images of core needle biopsies. Mod. Pathol. 33, 2058–2066 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Perincheri, S. et al. An independent assessment of an artificial intelligence system for prostate cancer detection shows strong diagnostic accuracy. Mod. Pathol. 34, 1588–1595 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. FDA. Evaluation of automatic class III designation for Paige Prostate. fda.gov, https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN200080.pdf (accessed 3 June 2024).

  86. Ebrahimian, S. et al. FDA-regulated AI algorithms: trends, strengths, and gaps of validation studies. Acad. Radiol. 29, 559–566 (2022).

    Article  PubMed  Google Scholar 

  87. Elemento, O., Leslie, C., Lundin, J. & Tourassi, G. Artificial intelligence in cancer research, diagnosis and therapy. Nat. Rev. Cancer 21, 747–752 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Hillis, J. M. et al. The lucent yet opaque challenge of regulating artificial intelligence in radiology. NPJ Digit. Med 7, 69 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lyell, D., Wang, Y., Coiera, E. & Magrabi, F. More than algorithms: an analysis of safety events involving ML-enabled medical devices reported to the FDA. J. Am. Med. Inform. Assoc. 30, 1227–1236 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ludvigsen, K. G. A. Facebook disclose the carbon footprint of their new LLaMA models. Medium kaspergroesludvigsen.medium.com/facebook-disclose-the-carbon-footprint-of-their-new-llama-models-9629a3c5c28b (2023).

  91. Schwalbe, N. & Wahl, B. Artificial intelligence and the future of global health. Lancet 395, 1579–1586 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ali, M. R., Lawson, C. A., Wood, A. M. & Khunti, K. Addressing ethnic and global health inequalities in the era of artificial intelligence healthcare models: a call for responsible implementation. J. R. Soc. Med 116, 260–262 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Roth, B. et al. Low-resource finetuning of foundation models beats state-of-the-art in histopathology. Preprint at arXiv https://doi.org/10.48550/arXiv.2401.04720 (2024).

  94. Smith, G., Bateman, M., Gillet, R. & Thanisch, E. The carbon footprint of large language models. CUTTER www.cutter.com/article/large-language-models-whats-environmental-impact (2023).

  95. Oduoye, M. O. et al. Impacts of the advancement in artificial intelligence on laboratory medicine in low- and middle-income countries: challenges and recommendations – a literature review. Health Sci. Rep. 7, e1794 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Cherezov, D., Viswanathan, V. S., Fu, P., Gupta, A. & Madabhushi, A. Rank acquisition impact on radiomics estimation (AсquIRE) in chest CT imaging: a retrospective multi-site, multi-use-case study. Comput. Methods Prog. Biomed. 244, 107990 (2024).

    Article  Google Scholar 

  97. Baxi, V., Edwards, R., Montalto, M. & Saha, S. Digital pathology and artificial intelligence in translational medicine and clinical practice. Mod. Pathol. 35, 23–32 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Mi, H. et al. Impact of different scanners and acquisition parameters on robustness of MR radiomics features based on women’s cervix. Sci. Rep. 10, 20407 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yuan, J. et al. Quantitative assessment of acquisition imaging parameters on MRI radiomics features: a prospective anthropomorphic phantom study using a 3D-T2W-TSE sequence for MR-guided-radiotherapy. Quant. Imaging Med. Surg. 11, 1870–1887 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ogbole, G. I., Adeyomoye, A. O., Badu-Peprah, A., Mensah, Y. & Nzeh, D. A. Survey of magnetic resonance imaging availability in West Africa. Pan. Afr. Med. J. 30, 240 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Mackin, D. et al. Measuring computed tomography scanner variability of radiomics features. Invest. Radiol. 50, 757–765 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Luh, J. Y. et al. ACR–ASTRO practice parameter for image-guided radiation therapy (IGRT). Am. J. Clin. Oncol. 43, 459–468 (2020).

    Article  PubMed  Google Scholar 

  103. Mottet, N. et al. EAU-ESTRO-SIOG guidelines on prostate cancer. part 1: screening, diagnosis, and local treatment with curative intent. Eur. Urol. 71, 618–629 (2017).

    Article  PubMed  Google Scholar 

  104. Boellaard, R. et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur. J. Nucl. Med. Mol. Imaging 42, 328–354 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. deSouza, N. M. et al. Validated imaging biomarkers as decision-making tools in clinical trials and routine practice: current status and recommendations from the EIBALL* subcommittee of the European Society of Radiology (ESR). Insights Imaging 10, 87 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Coalition for Health AI. Blueprint for trustworthy AI implementation guidance and assurance for healthcare. CHAI www.coalitionforhealthai.org/papers/Blueprint%20for%20Trustworthy%20AI.pdf (2022).

  107. Nhat, P. T. H. et al. Clinical benefit of AI-assisted lung ultrasound in a resource-limited intensive care unit. Crit. Care. 27, 257 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  108. GE HealthCare. GE HealthCare awarded a $44 million grant to develop artificial intelligence-assisted ultrasound technology aimed at improving outcomes in low-and-middle-income countries. GE HealthCare www.gehealthcare.com/about/newsroom/press-releases/ge-healthcare-awarded-a-44-million-grant-to-develop-artificial-intelligence-assisted-ultrasound-technology-aimed-at-improving-outcomes-in-low-and-middle-income-countries?npclid=botnpclid (2023).

  109. U.S. Agency for International Development. Artificial intelligence in global health: defining a collective path forward. USAID www.usaid.gov/cii/ai-in-global-health (2023).

  110. Koh, D.-M. et al. Artificial intelligence and machine learning in cancer imaging. Commun. Med 2, 133 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Chen, M. M. et al. Artificial intelligence in oncologic imaging. Eur. J. Radiol. Open 9, 100441 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Jobin, A., Ienca, M. & Vayena, E. The global landscape of AI ethics guidelines. Nat. Mach. Intell. 1, 389–399 (2019).

    Article  Google Scholar 

  113. Vaidya, A. et al. Demographic bias in misdiagnosis by computational pathology models. Nat. Med 30, 1174–1190 (2024).

    Article  CAS  PubMed  Google Scholar 

  114. Chen, Y., Clayton, E. W., Novak, L. L., Anders, S. & Malin, B. Human-centered design to address biases in artificial intelligence. J. Med. Internet Res 25, e43251 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Gu, J. et al. A west African ancestry-associated SNP on 8q24 predicts a positive biopsy in African American men with suspected prostate cancer following PSA screening. Prostate 84, 694–705 (2024).

    Article  CAS  PubMed  Google Scholar 

  116. Horie, S. et al. Pan-cancer comparative and integrative analyses of driver alterations using Japanese and international genomic databases. Cancer Discov. 14, 786–803 (2024).

    Article  PubMed  Google Scholar 

  117. Azarianpour Esfahani, S., Fu, P., Mahdi, H. & Madabhushi, A. Computational features of TIL architecture are differentially prognostic of uterine cancer between African and Caucasian American women [abstract]. J. Clin. Oncol. 39 (Suppl. 15), 5585 (2021).

    Article  Google Scholar 

  118. Li, H. et al. Computerized image analysis of nuclear morphological features reveals differences in phenotype and prognosis of disease free survival of early stage ER+ breast cancers for South Asian and North American women [abstract]. Cancer Res 81 (Suppl. 4), PS4-45 (2021).

    Article  Google Scholar 

  119. Joshi, S. et al. Proceedings of the 3rd Indian Cancer Genome Atlas Conference 2022: Biobanking to Omics: Collecting the Global Experience. JCO Glob. Oncol. 9, e2200176 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Nagai, A. et al. Overview of the BioBank Japan Project: study design and profile. J. Epidemiol. 27, S2–S8 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Kondal, D. et al. Cohort profile: the Center for cArdiometabolic Risk Reduction in South Asia (CARRS). Int. J. Epidemiol. 51, e358–e371 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 12, e1001779 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Pramesh, C. S., Badwe, R. A. & Sinha, R. K. The national cancer grid of India. Indian J. Med. Paediatr. Oncol. 35, 226–227 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Medical Imaging and Data Resource Center. Bias and diversity working group. MIDRC www.midrc.org/working-groups/bias-and-diversity (2024).

  125. Yala, A. et al. Multi-institutional validation of a mammography-based breast cancer risk model. J. Clin. Oncol. 40, 1732–1740 (2022).

    Article  PubMed  Google Scholar 

  126. Mikhael, P. G. et al. Sybil: a validated deep learning model to predict future lung cancer risk from a single low-dose chest computed tomography. J. Clin. Oncol. 41, 2191–2200 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Kim, H.-I., Lim, H. & Moon, A. Sex differences in cancer: epidemiology, genetics and therapy. Biomol. Ther. 26, 335–342 (2018).

    Article  CAS  Google Scholar 

  128. Lopes-Ramos, C. M., Quackenbush, J. & DeMeo, D. L. Genome-wide sex and gender differences in cancer. Front. Oncol. 10, 597788 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Doshi, B., Athans, S. R. & Woloszynska, A. Biological differences underlying sex and gender disparities in bladder cancer: current synopsis and future directions. Oncogenesis 12, 44 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Beig, N. et al. Sexually dimorphic radiogenomic models identify distinct imaging and biological pathways that are prognostic of overall survival in glioblastoma. Neuro Oncol. 23, 251–263 (2021).

    Article  PubMed  Google Scholar 

  131. Dankwa-Mullan, I. & Weeraratne, D. Artificial intelligence and machine learning technologies in cancer care: addressing disparities, bias, and data diversity. Cancer Discov. 12, 1423–1427 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Lee, M. S., Guo, L. N. & Nambudiri, V. E. Towards gender equity in artificial intelligence and machine learning applications in dermatology. J. Am. Med. Inform. Assoc. 29, 400–403 (2022).

    Article  PubMed  Google Scholar 

  133. National Institutes of Health. Bridge to artificial intelligence (Bridge2AI). Office of Strategic Coordination–The Common Fund commonfund.nih.gov/bridge2ai (2024).

  134. AIM-AHEAD. AIM-AHEAD hallmarks of success. AIM-AHEAD aim-ahead.net/convention/p/hos (2023).

  135. Zou, J. & Schiebinger, L. Ensuring that biomedical AI benefits diverse populations. EBioMedicine 67, 103358 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Gonzales, A., Guruswamy, G. & Smith, S. R. Synthetic data in health care: a narrative review. PLoS Digit. Health 2, e0000082 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Chen, R. J., Lu, M. Y., Chen, T. Y., Williamson, D. F. K. & Mahmood, F. Synthetic data in machine learning for medicine and healthcare. Nat. Biomed. Eng. 5, 493–497 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Ktena, I. et al. Generative models improve fairness of medical classifiers under distribution shifts. Nat. Med 30, 1166–1173 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Giuffrè, M. & Shung, D. L. Harnessing the power of synthetic data in healthcare: innovation, application, and privacy. NPJ Digit. Med 6, 186 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Hicks, S. A. et al. On evaluation metrics for medical applications of artificial intelligence. Sci. Rep. 12, 5979 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Coalition for Health AI. Providing guidelines for the responsible use of AI in healthcare. CHAI www.coalitionforhealthai.org/ (2023).

  142. McIntosh, C. et al. Clinical integration of machine learning for curative-intent radiation treatment of patients with prostate cancer. Nat. Med 27, 999–1005 (2021).

    Article  CAS  PubMed  Google Scholar 

  143. Bajwa, J., Munir, U., Nori, A. & Williams, B. Artificial intelligence in healthcare: transforming the practice of medicine. Future Heal. J. 8, e188–e194 (2021).

    Article  Google Scholar 

  144. Weissglass, D. E. Contextual bias, the democratization of healthcare, and medical artificial intelligence in low- and middle-income countries. Bioethics 36, 201–209 (2022).

    Article  PubMed  Google Scholar 

  145. U.S. Food and Drug Administration. Clinical decision support software: Guidance for industry and Food and Drug Administration staff. FDA digirepo.nlm.nih.gov/master/borndig/9918504188706676/9918504188706676.pdf (2022).

  146. Stevens, A. F. & Stetson, P. Theory of trust and acceptance of artificial intelligence technology (TrAAIT): an instrument to assess clinician trust and acceptance of artificial intelligence. J. Biomed. Inf. 148, 104550 (2023).

    Article  Google Scholar 

  147. Abràmoff, M. D. et al. Considerations for addressing bias in artificial intelligence for health equity. NPJ Digit. Med 6, 170 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Dortche, K., McCarthy, G., Banbury, S. & Yannatos, I. Promoting health equity through improved regulation of artificial intelligence medical devices. JSPG 21, https://doi.org/10.38126/JSPG210302 (2023).

  149. Domalpally, A. & Channa, R. Real-world validation of artificial intelligence algorithms for ophthalmic imaging. Lancet Digit. Health 3, e463–e464 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Kasyanau A. How medical providers can increase patients’ trust in artificial intelligence. Entrepreneur www.entrepreneur.com/science-technology/how-medical-providers-can-increase-patients-trust-in-ai/448683 (2023).

  151. Hantel, A. et al. Perspectives of oncologists on the ethical implications of using artificial intelligence for cancer care. JAMA Netw. Open 7, e244077 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  152. [No authors listed] Frugal innovation: why low cost doesn’t have to mean low impact. Nature 624, 8 (2023).

    Article  Google Scholar 

  153. AppliedRadiology. Qure.ai nets FDA clearance for AI-powered chest X-ray lung nodule solution. AppliedRadiology appliedradiology.com/Articles/qure-ai-nets-fda-clearance-for-ai-powered-chest-x-ray-lung-nodule-solution (2024).

  154. Mutala, T. M., Onyambu, C. K. & Aywak, A. A. Radiology practice in sub-Saharan Africa during the COVID-19 outbreak: points to consider. Pan. Afr. Med. J. 37, 28 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  155. AppliedRadiology. Koios medical smart ultrasound AI software gets FDA nod. AppliedRadiology appliedradiology.com/articles/koios-medical-smart-ultrasound-ai-software-gets-fda-nod (2024).

  156. Butterfly Network. Butterfly network announces new FDA-cleared AI-enabled lung feature. Butterfly Network www.butterflynetwork.com/press-releases/fda-clearance-butterfly-auto-b-lines-ai-tool (2024).

  157. Qure.ai. Fujifilm and Qure.ai join hands with IHVN to accelerate TB screening in rural Nigerian communities. qure.ai www.qure.ai/news_press_coverages/fujifilm-and-qure-ai-join-hands-with-ihvn-to-accelerate-tb-screening-in-rural-nigerian-communities (2022).

  158. Qure.ai. Fujifilm partners with Qure.ai to make intelligent X-ray solutions. qure.ai, https://www.qure.ai/news_press_coverages/fujifilm-partners-with-qure-ai-to-make-intelligent-x-ray-solutions (19 May 2021).

  159. Lunit. Fujifilm introduces its AI-powered product for chest X-ray in Japan, in collaboration with Lunit. Lunit www.lunit.io/en/company/news/fujifilm-introduces-its-ai-powered-product-for-chest-x-ray-in-japan-in-collaboration-with-lunit (2021).

  160. European Commission. Proposal for a regulation of the European Parliament and of the Council laying down harmonised rules on artificial intelligence (Artificial Intelligence Act) and amending certain union legislative acts. Eur-Lex eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206 (2021).

  161. Linardatos, P., Papastefanopoulos, V. & Kotsiantis, S. Explainable AI: a review of machine learning interpretability methods. Entropy 23, 18 (2021).

    Article  Google Scholar 

  162. Chae, A. et al. Strategies for implementing machine learning algorithms in the clinical practice of radiology. Radiology 310, e223170 (2024).

    Article  PubMed  Google Scholar 

  163. FDA. FDA Digital Health Advisory Committee. fda.gov, https://www.fda.gov/medical-devices/digital-health-center-excellence/fda-digital-health-advisory-committee (2024).

  164. Parikh, R. B. & Helmchen, L. A. Paying for artificial intelligence in medicine. NPJ Digit Med 5, 63 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

V.S.V. and A.M. researched data, made a substantial contribution to discussions of content and wrote the manuscript. All authors reviewed and/or edited the manuscript prior to submission.

Corresponding author

Correspondence to Anant Madabhushi.

Ethics declarations

Competing interests

A.M. has acted as an adviser and/or consultant to the Frederick National Laboratory, Picture Health, SimBioSys and Takeda, has received research funding from AstraZeneca and Bristol Myers-Squibb, is listed on two R01 grants alongside Inspirata Inc., and is listed on patents licensed to Elucid Bioimaging and Picture Health. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viswanathan, V.S., Parmar, V. & Madabhushi, A. Towards equitable AI in oncology. Nat Rev Clin Oncol (2024). https://doi.org/10.1038/s41571-024-00909-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41571-024-00909-8

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research