Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bispecific and multispecific antibodies in oncology: opportunities and challenges

Abstract

Research into bispecific antibodies, which are designed to simultaneously bind two antigens or epitopes, has advanced enormously over the past two decades. Owing to advances in protein engineering technologies and considerable preclinical research efforts, bispecific antibodies are constantly being developed and optimized to improve their efficacy and to mitigate toxicity. To date, >200 of these agents, the majority of which are bispecific immune cell engagers, are in either preclinical or clinical evaluation. In this Review, we discuss the role of bispecific antibodies in patients with cancer, including history and development, as well as innovative targeting strategies, clinical applications, and adverse events. We also discuss novel alternative bispecific antibody constructs, such as those targeting two antigens expressed by tumour cells or cells located in the tumour microenvironment. Finally, we consider future research directions in this rapidly evolving field, including innovative antibody engineering strategies, which might enable more effective delivery, overcome resistance, and thus optimize clinical outcomes.

Key points

  • Following the approval of blinatumomab in 2014 for use in patients with relapsed and/or refractory B cell acute lymphoblastic leukaemia, a further ten bispecific antibodies have been approved by regulators globally and a further >200 bispecific antibodies, with increasingly diverse designs and mechanisms of action, are currently in preclinical or clinical development.

  • Identifying the most appropriate target antigen is a major challenge for the successful development of bispecific antibodies, especially in solid tumours, and holds the key to creating safe and effective off-the-shelf agents for clinical application.

  • Bispecific antibodies are able to recruit immune cells into the vicinity of tumours and enable them to thrive in the immunosuppressive tumour microenvironment owing to their ability to overcome the effects of various inhibitory factors and provide stimulatory signals capable of restoring antitumour activity.

  • Bispecific antibodies targeting two or more pathways involved in tumour progression simultaneously might reduce the risks of drug resistance and tumour progression compared to monotherapy with agents targeting one of the same pathways.

  • Strategies to mitigate cytokine release syndrome have been identified, such as pretreatment with steroids, step-up dosing, subcutaneous administration, modification of CD3ε affinities and prodrug concepts.

  • The optimal clinical use, including treatment sequencing and the identification of possible combination therapies, remains uncertain for most of these agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immune cell-activating bispecific antibodies and their mechanisms of action.
Fig. 2: Crosslinking bispecific antibodies.
Fig. 3: Bispecific antibodies targeting signalling pathways, immune checkpoints and/or cytokines.

Similar content being viewed by others

References

  1. Sun, Y. et al. Bispecific antibodies in cancer therapy: target selection and regulatory requirements. Acta Pharm. Sin. B 13, 3583–3597 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Elshiaty, M., Schindler, H. & Christopoulos, P. Principles and current clinical landscape of multispecific antibodies against cancer. Int. J. Mol. Sci. 22, 55632 (2021).

    Article  Google Scholar 

  3. Perez, P., Hoffman, R. W., Shaw, S., Bluestone, J. A. & Segal, D. M. Specific targeting of cytotoxic T cells by anti-T3 linked to anti-target cell antibody. Nature 316, 354–356 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. Kontermann, R. E. Dual targeting strategies with bispecific antibodies. MAbs 4, 182–197 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Huang, S., van Duijnhoven, S. M. J., Sijts, A. J. A. M. & van Elsas, A. Bispecific antibodies targeting dual tumor-associated antigens in cancer therapy. J. Cancer Res. Clin. Oncol. 146, 3111–3122 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brinkmann, U. & Kontermann, R. E. The making of bispecific antibodies. MAbs 9, 182–212 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roopenian, D. C. & Akilesh, S. FcRn: the neonatal Fc receptor comes of age. Nat. Rev. Immunol. 7, 715–725 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Scott, A. M., Wolchok, J. D. & Old, L. J. Antibody therapy of cancer. Nat. Rev. Cancer 12, 278–287 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Li, H., Er Saw, P. & Song, E. Challenges and strategies for next-generation bispecific antibody-based antitumor therapeutics. Cell. Mol. Immunol. 17, 451–461 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kontermann, R. E. Strategies to extend plasma half-lives of recombinant antibodies. BioDrugs 23, 93–109 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Chames, P., Van Regenmortel, M., Weiss, E. & Baty, D. Therapeutic antibodies: successes, limitations and hopes for the future. Br. J. Pharmacol. 157, 220–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, X., Mathieu, M. & Brezski, R. J. IgG Fc engineering to modulate antibody effector functions. Protein Cell 9, 63–73 (2018).

    Article  PubMed  Google Scholar 

  13. Xu, Y. et al. Production of bispecific antibodies in “knobs-into-holes” using a cell-free expression system. MAbs 7, 231–242 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Schaefer, W. et al. Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proc. Natl Acad. Sci. USA 108, 11187–11192 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Surowka, M., Schaefer, W. & Klein, C. Ten years in the making: application of CrossMab technology for the development of therapeutic bispecific antibodies and antibody fusion proteins. MAbs 13, 1967714 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Klein, C. et al. Engineering therapeutic bispecific antibodies using CrossMab technology. Methods 154, 21–31 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Labrijn, A. F. et al. Efficient generation of stable bispecific IgG1 by controlled Fab-arm exchange. Proc. Natl Acad. Sci. USA 110, 5145–5150 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gramer, M. J. et al. Production of stable bispecific IgG1 by controlled Fab-arm exchange: scalability from bench to large-scale manufacturing by application of standard approaches. MAbs 5, 962–973 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Vafa, O. & Trinklein, N. D. Perspective: designing T-cell engagers with better therapeutic windows. Front. Oncol. 10, 446 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wolf, E., Hofmeister, R., Kufer, P., Schlereth, B. & Baeuerle, P. A. BiTEs: bispecific antibody constructs with unique anti-tumor activity. Drug. Discov. Today 10, 1237–1244 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Moore, P. A. et al. Application of dual affinity retargeting molecules to achieve optimal redirected T-cell killing of B-cell lymphoma. Blood 117, 4542–4551 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Johnson, S. et al. Effector cell recruitment with novel Fv-based dual-affinity re-targeting protein leads to potent tumor cytolysis and in vivo B-cell depletion. J. Mol. Biol. 399, 436–449 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Reusch, U. et al. A tetravalent bispecific TandAb (CD19/CD3), AFM11, efficiently recruits T cells for the potent lysis of CD19+ tumor cells. MAbs 7, 584–604 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Muyldermans, S. Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem. 82, 775–797 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Arvedson, T., Bailis, J. M., Urbig, T. & Stevens, J. L. Considerations for design, manufacture, and delivery for effective and safe T-cell engager therapies. Curr. Opin. Biotechnol. 78, 102799 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Einsele, H. et al. The BiTE (bispecific T-cell engager) platform: development and future potential of a targeted immuno-oncology therapy across tumor types. Cancer 126, 3192–3201 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Suurs, F. V., Lub-de Hooge, M. N., de Vries, E. G. E. & de Groot, D. J. A. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges. Pharmacol. Ther. 201, 103–119 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, L., Hoseini, S. S., Xu, H., Ponomarev, V. & Cheung, N. K. Silencing Fc domains in t cell-engaging bispecific antibodies improves T-cell trafficking and antitumor potency. Cancer Immunol. Res. 7, 2013–2024 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jin, S. et al. Emerging new therapeutic antibody derivatives for cancer treatment. Signal. Transduct. Target. Ther. 7, 39 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tapia-Galisteo, A., Compte, M., Álvarez-Vallina, L. & Sanz, L. When three is not a crowd: trispecific antibodies for enhanced cancer immunotherapy. Theranostics 13, 1028–1041 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fenis, A., Demaria, O., Gauthier, L., Vivier, E. & Narni-Mancinelli, E. New immune cell engagers for cancer immunotherapy. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-023-00982-7 (2024).

    Article  PubMed  Google Scholar 

  32. Diefenbach, C. et al. A phase 1/2 randomized study of imvotamab monotherapy and in combination with loncastuximab tesirine in relapsed/refractory non-Hodgkin lymphomas [abstract]. Cancer Res. 83 (Suppl. 8), CT052 (2023).

    Article  Google Scholar 

  33. Herrmann, M. et al. Bifunctional PD-1 × ɑCD3 × ɑCD33 fusion protein reverses adaptive immune escape in acute myeloid leukemia. Blood 132, 2484–2494 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Lind, H. et al. Dual targeting of TGF-β and PD-L1 via a bifunctional anti-PD-L1/TGF-βRII agent: status of preclinical and clinical advances. J. Immunother. Cancer 8, e000433 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cheng, Y. et al. Trispecific killer engager 161519 enhances natural killer cell function and provides anti-tumor activity against CD19-positive cancers. Cancer Biol. Med. 17, 1026–1038 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tapia-Galisteo, A. et al. Trispecific T-cell engagers for dual tumor-targeting of colorectal cancer. Oncoimmunology 11, 2034355 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zuch de Zafra, C. L. et al. Targeting multiple myeloma with AMG 424, a novel anti-CD38/CD3 bispecific T-cell-recruiting antibody optimized for cytotoxicity and cytokine release. Clin. Cancer Res. 25, 3921–3933 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Ball, K., Dovedi, S. J., Vajjah, P. & Phipps, A. Strategies for clinical dose optimization of T cell-engaging therapies in oncology. MAbs 15, 2181016 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mandikian, D. et al. Relative target affinities of T-cell-dependent bispecific antibodies determine biodistribution in a solid tumor mouse model. Mol. Cancer Ther. 17, 776–785 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Haber, L. et al. Generation of T-cell-redirecting bispecific antibodies with differentiated profiles of cytokine release and biodistribution by CD3 affinity tuning. Sci. Rep. 11, 14397 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, D. et al. Construction of a novel TROP2/CD3 bispecific antibody with potent antitumor activity and reduced induction of Th1 cytokines. Protein Expr. Purif. 205, 106242 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Winer, E. S. et al. A phase 1, first-in-human, dose-escalation study of MGD024, a CD123 x CD3 bispecific Dart® molecule, in patients with relapsed or refractory CD123-positive (+) hematologic malignancies [abstract]. Blood 140 (Suppl. 1), 11753–11754 (2022).

    Article  Google Scholar 

  43. Slaga, D. et al. Avidity-based binding to HER2 results in selective killing of HER2-overexpressing cells by anti-HER2/CD3. Sci. Transl. Med. 10, eaat5775 (2018).

    Article  PubMed  Google Scholar 

  44. Bacac, M. et al. CD20-TCB with obinutuzumab pretreatment as next-generation treatment of hematologic malignancies. Clin. Cancer Res. 24, 4785–4797 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Hutchings, M. et al. Glofitamab, a novel, bivalent CD20-targeting T-cell-engaging bispecific antibody, induces durable complete remissions in relapsed or refractory B-cell lymphoma: a phase I trial. J. Clin. Oncol. 39, 1959–1970 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Labrijn, A. F., Janmaat, M. L., Reichert, J. M. & Parren, P. W. H. I. Bispecific antibodies: a mechanistic review of the pipeline. Nat. Rev. Drug. Discov. 18, 585–608 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Ellerman, D. Bispecific T-cell engagers: towards understanding variables influencing the in vitro potency and tumor selectivity and their modulation to enhance their efficacy and safety. Methods 154, 102–117 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. US Food and Drug Administration. Bispecific Antibody Development Programs Guidance for Industry. FDA, www.fda.gov/regulatory-information/search-fda-guidance-documents/bispecific-antibody-development-programs-guidance-industry (2021).

  49. Wang, S. et al. The state of the art of bispecific antibodies for treating human malignancies. EMBO Mol. Med. 13, e14291 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu, Z. & Cheung, N. V. T cell engaging bispecific antibody (T-BsAb): from technology to therapeutics. Pharmacol. Ther. 182, 161–175 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Offner, S., Hofmeister, R., Romaniuk, A., Kufer, P. & Baeuerle, P. A. Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells. Mol. Immunol. 43, 763–771 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, M., Lam, K. P. & Xu, S. Natural killer cell engagers (NKCEs): a new frontier in cancer immunotherapy. Front. Immunol. 14, 1207276 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Phung, S. K., Miller, J. S. & Felices, M. Bi-specific and tri-specific NK cell engagers: the new avenue of targeted NK cell immunotherapy. Mol. Diagn. Ther. 25, 577–592 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Fucà, G., Spagnoletti, A., Ambrosini, M., de Braud, F. & Di Nicola, M. Immune cell engagers in solid tumors: promises and challenges of the next generation immunotherapy. ESMO Open. 6, 100046 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Prager, I. & Watzl, C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J. Leukoc. Biol. 105, 1319–1329 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Geurts, V. C. M. et al. Monalizumab and trastuzumab in metastatic HER2-positive breast cancer: MIMOSA-trial [abstract 90TiP]. Ann. Oncol. 32 (Suppl. 2), S59 (2021).

    Article  Google Scholar 

  57. Lamers-Kok, N. et al. Natural killer cells in clinical development as non-engineered, engineered, and combination therapies. J. Hematol. Oncol. 15, 164 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bright, R. K., Bright, J. D. & Byrne, J. A. Overexpressed oncogenic tumor-self antigens. Hum. Vaccin. Immunother. 10, 3297–3305 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Haen, S. P., Löffler, M. W., Rammensee, H.-G. & Brossart, P. Towards new horizons: characterization, classification and implications of the tumour antigenic repertoire. Nat. Rev. Clin. Oncol. 17, 595–610 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Holland, C. J. et al. Specificity of bispecific T cell receptors and antibodies targeting peptide-HLA. J. Clin. Invest. 130, 2673–2688 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen, L. & Flies, D. B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 13, 227–242 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Larkin, J., Hodi, F. S. & Wolchok, J. D. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 1270–1271 (2015).

    Article  PubMed  Google Scholar 

  63. Frentzas, S. et al. A phase 1a/1b first-in-human study (COMPASSION-01) evaluating cadonilimab in patients with advanced solid tumors. Cell Rep. Med. 4, 101242 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yi, M. et al. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol. Cancer 21, 28 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhang, T., Lin, Y. & Gao, Q. Bispecific antibodies targeting immunomodulatory checkpoints for cancer therapy. Cancer Biol. Med. 20, 181–195 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dutta, S., Ganguly, A., Chatterjee, K., Spada, S. & Mukherjee, S. Targets of immune escape mechanisms in cancer: basis for development and evolution of cancer immune checkpoint inhibitors. Biology 12, 218 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stein, M. N. et al. Preliminary results from a phase 1/2 study of co-stimulatory bispecific PSMAxCD28 antibody REGN5678 in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) [abstract]. J. Clin. Oncol. 41 (Suppl. 6), 154 (2023).

    Article  Google Scholar 

  68. Kvarnhammar, A. M. et al. The CTLA-4 x OX40 bispecific antibody ATOR-1015 induces anti-tumor effects through tumor-directed immune activation. J. Immunother. Cancer 7, 103 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug. Discov. 18, 197–218 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Ku, G. et al. A phase I dose escalation study of PRS-343, a HER2/4-1BB bispecific molecule, in patients with HER2-positive malignancies [abstract 525O]. Ann. Oncol. 31 (Suppl. 4), S462–S463 (2020).

    Article  Google Scholar 

  71. Neijssen, J. et al. Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET. J. Biol. Chem. 296, 100641 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tschernia, N. P. & Gulley, J. L. Tumor in the crossfire: inhibiting TGF-β to enhance cancer immunotherapy. BioDrugs 36, 153–180 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kontermann, R. E. Antibody-cytokine fusion proteins. Arch. Biochem. Biophys. 526, 194–205 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Neri, D. Antibody-cytokine fusions: versatile products for the modulation of anticancer immunity. Cancer Immunol. Res. 7, 348–354 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gout, D. Y., Groen, L. S. & van Egmond, M. The present and future of immunocytokines for cancer treatment. Cell Mol. Life Sci. 79, 509 (2022).

    Article  CAS  PubMed  Google Scholar 

  76. Topp, M. S. et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 16, 57–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Kantarjian, H. et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N. Engl. J. Med. 376, 836–847 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. von Stackelberg, A. et al. Phase I/phase II study of blinatumomab in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. J. Clin. Oncol. 34, 4381–4389 (2016).

    Article  Google Scholar 

  79. Foa, R. et al. Dasatinib-blinatumomab for pH-positive acute lymphoblastic leukemia in adults. N. Engl. J. Med. 383, 1613–1623 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Foà, R. et al. Long-term results of the dasatinib-blinatumomab protocol for adult Philadelphia-positive ALL. J. Clin. Oncol. 42, 881–885 (2024).

    Article  PubMed  Google Scholar 

  81. Braig, F. et al. Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. Blood 129, 100–104 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Duell, J. et al. Frequency of regulatory T cells determines the outcome of the T-cell-engaging antibody blinatumomab in patients with B-precursor ALL. Leukemia 31, 2181–2190 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu, L. et al. MGD011, A CD19 x CD3 dual-affinity retargeting bi-specific molecule incorporating extended circulating half-life for the treatment of B-cell malignancies. Clin. Cancer Res. 23, 1506–1518 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Topp, M. et al. Safety of AFM11 in the treatment of patients with B-cell malignancies: findings from two phase 1 studies. Trials 24, 4 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sun, L. L. et al. Anti-CD20/CD3 T cell-dependent bispecific antibody for the treatment of B cell malignancies. Sci. Transl. Med. 7, 287ra270 (2015).

    Article  Google Scholar 

  86. Budde, L. E. et al. Single-agent mosunetuzumab shows durable complete responses in patients with relapsed or refractory B-cell lymphomas: phase I dose-escalation study. J. Clin. Oncol. 40, 481–491 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Kang, C. Mosunetuzumab: first approval. Drugs 82, 1229–1234 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Budde, L. E. et al. Safety and efficacy of mosunetuzumab, a bispecific antibody, in patients with relapsed or refractory follicular lymphoma: a single-arm, multicentre, phase 2 study. Lancet Oncol. 23, 1055–1065 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Liu, X., Zhao, J., Guo, X. & Song, Y. CD20 × CD3 bispecific antibodies for lymphoma therapy: latest updates from ASCO 2023 annual meeting. J. Hematol. Oncol. 16, 90 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Minson, A. & Dickinson, M. Glofitamab CD20-TCB bispecific antibody. Leuk. Lymphoma 62, 3098���3108 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Dickinson, M. J. et al. Glofitamab for relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 387, 2220–2231 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. van der Horst, H. J. et al. Epcoritamab induces potent anti-tumor activity against malignant B-cells from patients with DLBCL, FL and MCL, irrespective of prior CD20 monoclonal antibody treatment. Blood Cancer J. 11, 38 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Hutchings, M. et al. Dose escalation of subcutaneous epcoritamab in patients with relapsed or refractory B-cell non-Hodgkin lymphoma: an open-label, phase 1/2 study. Lancet 398, 1157–1169 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Thieblemont, C. et al. Epcoritamab, a novel, subcutaneous CD3xCD20 bispecific T-cell-engaging antibody, in relapsed or refractory large B-cell lymphoma: dose expansion in a phase I/II trial. J. Clin. Oncol. 41, 2238–2247 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Bannerji, R. et al. Odronextamab, a human CD20×CD3 bispecific antibody in patients with CD20-positive B-cell malignancies (ELM-1): results from the relapsed or refractory non-Hodgkin lymphoma cohort in a single-arm, multicentre, phase 1 trial. Lancet Haematol. 9, e327–e339 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Villasboas, J. C. et al. Results of a second, prespecified analysis of the phase 2 study ELM-2 confirm high rates of durable complete response with odronextamab in patients with relapsed/refractory (R/R) follicular lymphoma (FL) with extended follow-up [abstract]. Blood 142 (Suppl. 1), 3041 (2023).

    Article  Google Scholar 

  97. Ayyappan, S. et al. Final analysis of the phase 2 ELM-2 study: odronextamab in patients with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL) [abstract]. Blood 142 (Suppl. 1), 436–436 (2023).

    Article  Google Scholar 

  98. Patel, K. et al. A phase 1 study of plamotamab, an anti-CD20 x anti-CD3 bispecific antibody, in patients with relapsed/refractory non-Hodgkin’s lymphoma: recommended dose safety/efficacy update and escalation exposure-response analysis [abstract]. Blood 140 (Suppl. 1), 9470–9472 (2022).

    Article  Google Scholar 

  99. Falchi, L., Vardhana, S. A. & Salles, G. A. Bispecific antibodies for the treatment of B-cell lymphoma: promises, unknowns, and opportunities. Blood 141, 467–480 (2023).

    Article  CAS  PubMed  Google Scholar 

  100. Damiani, D. & Tiribelli, M. Present and future role of immune targets in acute myeloid leukemia. Cancers 15, 253 (2023).

    Article  CAS  Google Scholar 

  101. Walter, R. B. The role of CD33 as therapeutic target in acute myeloid leukemia. Expert. Opin. Ther. Targets 18, 715–718 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Ravandi, F. et al. Updated results from phase I dose-escalation study of AMG 330, a bispecific T-cell engager molecule, in patients with relapsed/refractory acute myeloid leukemia (R/R AML) [abstract]. J. Clin. Oncol. 38, 7508 (2020).

    Article  Google Scholar 

  103. Subklewe, M. et al. Preliminary results from a phase 1 first-in-human study of AMG 673, a novel half-life extended (HLE) anti-CD33/CD3 BiTE® (bispecific T-cell engager) in patients with relapsed/refractory (R/R) acute myeloid leukemia (AML) [abstract]. Blood 134 (Suppl. 1), 833 (2019).

    Article  Google Scholar 

  104. Nair-Gupta, P. et al. A novel C2 domain binding CD33xCD3 bispecific antibody with potent T-cell redirection activity against acute myeloid leukemia. Blood Adv. 4, 906–919 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ravandi, F. et al. Complete responses in relapsed/refractory acute myeloid leukemia (AML) patients on a weekly dosing schedule of vibecotamab (XmAb14045), a CD123 x CD3 T cell-engaging bispecific antibody; initial results of a phase 1 study [abstract]. Blood 136 (Suppl. 1), 4–5 (2020).

    Article  Google Scholar 

  106. Ravandi, F. et al. Complete responses in relapsed/refractory acute myeloid leukemia (AML) patients on a weekly dosing schedule of XmAb14045, a CD123 x CD3 T cell-engaging bispecific antibody: initial results of a phase 1 study [abstract]. Blood 132 (Suppl. 1), 763 (2018).

    Article  Google Scholar 

  107. Watts, J. M. et al. Preliminary results from a phase 1 study of APVO436, a novel anti-CD123 x Anti-CD3 bispecific molecule, in relapsed/refractory acute myeloid leukemia and myelodysplastic syndrome. Blood 136 (Suppl. 1), 11–12 (2020).

    Article  Google Scholar 

  108. Uy, G. L. et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood 137, 751–762 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Boyiadzis, M. et al. First-in-human study of JNJ-63709178, a CD123/CD3 targeting antibody, in relapsed/refractory acute myeloid leukemia. Clin. Transl. Sci. 16, 429–435 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Daver, N., Alotaibi, A. S., Bücklein, V. & Subklewe, M. T-cell-based immunotherapy of acute myeloid leukemia: current concepts and future developments. Leukemia 35, 1843–1863 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang, J. et al. C-type lectin-like molecule-1 as a biomarker for diagnosis and prognosis in acute myeloid leukemia: a preliminary study. Biomed. Res. Int. 2021, 6643948 (2021).

    PubMed  PubMed Central  Google Scholar 

  112. Allen, C., Zeidan, A. M. & Bewersdorf, J. P. BiTEs, DARTS, BiKEs and TriKEs – are antibody based therapies changing the future treatment of AML? Life 11, 465 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Topp, M. S. et al. Anti-B-cell maturation antigen BiTE molecule AMG 420 induces responses in multiple myeloma. J. Clin. Oncol. 38, 775–783 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Helwick, C. Bispecific antibodies: successes and challenges. The ASCO Post https://ascopost.com/issue/april-10-2020/bispecific-antibodies-successes-and-challenges/ (2020).

  115. Usmani, S. Z. et al. Teclistamab, a B-cell maturation antigen × CD3 bispecific antibody, in patients with relapsed or refractory multiple myeloma (MajesTEC-1): a multicentre, open-label, single-arm, phase 1 study. Lancet 398, 665–674 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Usmani, S. Z. et al. Phase I study of teclistamab, a humanized B-cell maturation antigen (BCMA) x CD3 bispecific antibody, in relapsed/refractory multiple myeloma (R/R MM) [abstract]. J. Clin. Oncol. 38 (Suppl. 15), 100 (2020).

    Article  Google Scholar 

  117. Moreau, P. et al. Teclistamab in relapsed or refractory multiple myeloma. N. Engl. J. Med. 387, 495–505 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Jakubowiak, A. J. et al. Elranatamab, a BCMA-targeted T-cell redirecting immunotherapy, for patients with relapsed or refractory multiple myeloma: updated results from MagnetisMM-1 [abstract]. J. Clin. Oncol. 40 (Suppl. 16), 8014 (2022).

    Article  Google Scholar 

  119. Bahlis, N. J. et al. Elranatamab in relapsed or refractory multiple myeloma: the MagnetisMM-1 phase 1 trial. Nat. Med. 29, 2570–2576 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lesokhin, A. M. et al. Elranatamab in relapsed or refractory multiple myeloma: phase 2 MagnetisMM-3 trial results. Nat. Med. 29, 2259–2267 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lee, H. C. et al. LINKER-MM1 study: linvoseltamab (REGN5458) in patients with relapsed/refractory multiple myeloma [abstract]. J. Clin. Oncol. 41 (Suppl. 16), 8006 (2023).

    Article  Google Scholar 

  122. Foureau, D. M. et al. Ex vivo efficacy of BCMA-bispecific antibody TNB-383B in relapsed/refractory multiple myeloma. EJHaem 1, 113–121 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kumar, S. et al. A phase 1 first-in-human study of Tnb-383B, a BCMA x CD3 bispecific T-cell redirecting antibody, in patients with relapsed/refractory multiple myeloma [abstract]. Blood 138 (Suppl. 1), 900 (2021).

    Article  Google Scholar 

  124. Costa, L. J. et al. First clinical study of the B-cell maturation antigen (BCMA) 2+1 T cell engager (TCE) CC-93269 in patients (Pts) with relapsed/refractory multiple myeloma (RRMM): interim results of a phase 1 multicenter trial [abstract]. Blood 134 (Suppl. 1), 143 (2019).

    Article  Google Scholar 

  125. Wong, S. W. et al. Alnuctamab (ALNUC; BMS-986349; CC-93269), a B-cell maturation antigen (BCMA) x CD3 T-cell engager (TCE), in patients (pts) with relapsed/refractory multiple myeloma (RRMM): results from a phase 1 first-in-human clinical study [abstract]. Blood 140 (Suppl. 1), 400–402 (2022).

    Article  Google Scholar 

  126. Bar, N. et al. Alnuctamab (ALNUC; BMS-986349; CC-93269), a 2+1 B-cell maturation antigen (BCMA) × CD3 T-cell engager (TCE), administered subcutaneously (SC) in patients (Pts) with relapsed/refractory multiple myeloma (rrmm): updated results from a phase 1 first-in-human clinical study [abstract]. Blood 142 (Suppl. 1), 2011 (2023).

    Article  Google Scholar 

  127. Zhou, X., Rasche, L., Kortüm, K. M., Mersi, J. & Einsele, H. BCMA loss in the epoch of novel immunotherapy for multiple myeloma: from biology to clinical practice. Haematologica 108, 958–968 (2023).

    Article  CAS  PubMed  Google Scholar 

  128. Del Giudice, M. L., Galimberti, S. & Buda, G. Beyond BCMA, why GPRC5D could be the right way: treatment strategies with immunotherapy at relapse after anti-BCMA agents. Cancer Immunol. Immunother. 72, 3931–3937 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Verkleij, C. P. M. et al. Preclinical activity and determinants of response of the GPRC5DxCD3 bispecific antibody talquetamab in multiple myeloma. Blood Adv. 5, 2196–2215 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chari, A. et al. Talquetamab, a T-cell-redirecting GPRC5D bispecific antibody for multiple myeloma. N. Engl. J. Med. 387, 2232–2244 (2022).

    Article  CAS  PubMed  Google Scholar 

  131. Li, J. et al. Membrane-proximal epitope facilitates efficient T cell synapse formation by anti-FcRH5/CD3 and is a requirement for myeloma cell killing. Cancer Cell 31, 383–395 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Trudel, S. et al. Cevostamab monotherapy continues to show clinically meaningful activity and manageable safety in patients with heavily pre-treated relapsed/refractory multiple myeloma (RRMM): updated results from an ongoing phase I study [abstract]. Blood 138 (Suppl. 1), 157 (2021).

    Article  Google Scholar 

  133. Lesokhin, A. M. et al. Enduring responses after 1-year, fixed-duration cevostamab therapy in patients with relapsed/refractory multiple myeloma: early experience from a phase I study [abstract]. Blood 140 (Suppl. 1), 4415–4417 (2022).

    Article  Google Scholar 

  134. Kumar, S. et al. CAMMA 2: A phase I/II trial evaluating the efficacy and safety of cevostamab in patients with relapsed/refractory multiple myeloma (RRMM) who have triple-class refractory disease and have received a prior anti-B-cell maturation antigen (BCMA) agent [abstract]. J. Clin. Oncol. 41 (Suppl. 16), TPS8064 (2023).

    Article  Google Scholar 

  135. Doucey, M.-A. et al. ISB 1342: A first-in-class CD38 T cell engager for the treatment of relapsed refractory multiple myeloma [abstract]. J. Clin. Oncol. 39 (Suppl. 15), 8044 (2021).

    Article  Google Scholar 

  136. Singh, A., Dees, S. & Grewal, I. S. Overcoming the challenges associated with CD3+ T-cell redirection in cancer. Br. J. Cancer 124, 1037–1048 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kebenko, M. et al. A multicenter phase 1 study of solitomab (MT110, AMG 110), a bispecific EpCAM/CD3 T-cell engager (BiTE(R)) antibody construct, in patients with refractory solid tumors. Oncoimmunology 7, e1450710 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Hummel, H.-D. et al. Phase 1 study of pasotuxizumab (BAY 2010112), a PSMA-targeting bispecific T cell engager (BiTE) immunotherapy for metastatic castration-resistant prostate cancer (mCRPC) [abstract]. J. Clin. Oncol. 37 (Suppl. 15), 5034 (2019).

    Article  Google Scholar 

  139. Nolan-Stevaux, O. et al. AMG 509 (Xaluritamig), an anti-STEAP1 XmAb 2+1 T-cell redirecting immune therapy with avidity-dependent activity against prostate cancer. Cancer Discov. 14, 90–103 (2024).

    Article  PubMed  Google Scholar 

  140. Yao, J. et al. DLL3 as an emerging target for the treatment of neuroendocrine neoplasms. Oncologist 27, 940–951 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Paz-Ares, L. et al. Tarlatamab, a first-in-class DLL3-targeted bispecific T-cell engager, in recurrent small cell lung cancer: an open-label, phase I study. J. Clin. Oncol. 41, 2893–2903 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ahn, M. J. et al. Tarlatamab for patients with previously treated small-cell lung cancer. N. Engl. J. Med. 389, 2063–2075 (2023).

    Article  CAS  PubMed  Google Scholar 

  143. Hipp, S. et al. A bispecific DLL3/CD3 IgG-like T-cell engaging antibody induces antitumor responses in small cell lung cancer. Clin. Cancer Res. 26, 5258–5268 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Michel, T., Ollert, M. & Zimmer, J. A hot topic: cancer immunotherapy and natural killer cells. Int J. Mol. Sci. 23, 797 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Felices, M., Lenvik, T. R., Davis, Z. B., Miller, J. S. & Vallera, D. A. Generation of BiKEs and TriKEs to improve NK cell-mediated targeting of tumor cells. Methods Mod. Biol. 1441, 333–346 (2016).

    Article  CAS  Google Scholar 

  146. Rothe, A. et al. A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma. Blood 125, 4024–4031 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sasse, S. et al. AFM13 in patients with relapsed or refractory classical Hodgkin lymphoma: final results of an open-label, randomized, multicenter phase II trial. Leuk. Lymphoma 63, 1871–1878 (2022).

    Article  CAS  PubMed  Google Scholar 

  148. Bartlett, N. L. et al. A phase 1b study of AFM13 in combination with pembrolizumab in patients with relapsed or refractory Hodgkin lymphoma. Blood 136, 2401–2409 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kim, W. S. et al. REDIRECT: a phase 2 study of AFM13 in patients with CD30-positive relapsed or refractory (R/R) peripheral T cell lymphoma (PTCL) [abstract]. Cancer Res. 83 (Suppl. 8), CT024 (2023).

    Article  Google Scholar 

  150. Kerbauy, L. N. et al. Combining AFM13, a bispecific CD30/CD16 antibody, with cytokine-activated blood and cord blood-derived NK cells facilitates CAR-like responses against CD30+ malignancies. Clin. Cancer Res. 27, 3744–3756 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Plesner, T. et al. Phase I study of safety and pharmacokinetics of RO7297089, an anti-BCMA/CD16a bispecific antibody, in patients with relapsed, refractory multiple myeloma. Clin. Hematol. Int. 5, 43–51 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Vallera, D. A. et al. IL15 trispecific killer engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function. Clin. Cancer Res. 22, 3440–3450 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Felices, M. et al. Novel CD19-targeted TriKE restores NK cell function and proliferative capacity in CLL. Blood Adv. 3, 897–907 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yun, H. D. et al. Trispecific killer engager CD16xIL15xCD33 potently induces NK cell activation and cytotoxicity against neoplastic mast cells. Blood Adv. 2, 1580–1584 (2018).

    Article  CAS  PubMed  Google Scholar 

  155. Safran, H. et al. Phase 1/2 study of DF1001, a novel tri-specific, NK cell engager therapy targeting HER2, in patients with advanced solid tumors: phase 1 DF1001 monotherapy dose-escalation results [abstract]. J. Clin. Oncol. 41 (Suppl. 16), 2508 (2023).

    Article  Google Scholar 

  156. Gauthier, L. et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell 177, 1701–1713.e16 (2019).

    Article  CAS  PubMed  Google Scholar 

  157. Riva, C. et al. Harnessing immune response in acute myeloid leukemia. J. Clin. Med. 12, 5824 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kohnke, T., Krupka, C., Tischer, J., Knosel, T. & Subklewe, M. Increase of PD-L1 expressing B-precursor ALL cells in a patient resistant to the CD19/CD3-bispecific T cell engager antibody blinatumomab. J. Hematol. Oncol. 8, 111 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Krupka, C. et al. Blockade of the PD-1/PD-L1 axis augments lysis of AML cells by the CD33/CD3 BiTE antibody construct AMG 330: reversing a T-cell-induced immune escape mechanism. Leukemia 30, 484–491 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Berezhnoy, A. et al. Development and preliminary clinical activity of PD-1-guided CTLA-4 blocking bispecific DART molecule. Cell Rep. Med. 1, 100163 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Luke, J. J. et al. Lorigerlimab, a bispecific PD-1×CTLA-4 DART molecule in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC): A phase 1 expansion (exp) cohort [abstract]. J. Clin. Oncol. 41 (Suppl. 6), 155 (2023).

    Article  Google Scholar 

  162. Albiges, L. et al. Safety and clinical activity of MEDI5752, a PD-1/CTLA-4 bispecific checkpoint inhibitor, as monotherapy in patients (pts) with advanced renal cell carcinoma (RCC): preliminary results from an FTIH trial [abstract]. J. Clin. Oncol. 40 (Suppl. 16), 107 (2022).

    Article  Google Scholar 

  163. Dovedi, S. J. et al. Design and efficacy of a monovalent bispecific PD-1/CTLA4 antibody that enhances CTLA4 blockade on PD-1+ activated T cells. Cancer Discov. 11, 1100–1117 (2021).

    Article  CAS  PubMed  Google Scholar 

  164. Voss, M. H. et al. MEDI5752 (volrustomig), a novel PD-1/CTLA-4 bispecific antibody, in the first-line (1L) treatment of 65 patients (pts) with advanced clear cell renal cell carcinoma (aRCC) [abstract 1883MO]. Ann. Oncol. 34 (Suppl. 2), S1012 (2023).

    Article  Google Scholar 

  165. Li, Q. et al. The anti-PD-L1/CTLA-4 bispecific antibody KN046 in combination with nab-paclitaxel in first-line treatment of metastatic triple-negative breast cancer: a multicenter phase II trial. Nat. Commun. 15, 1015 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhao, Y. et al. Two-year follow-up from KN046 in combination with platinum doublet chemotherapy as first-line (1L) treatment for NSCLC: an open-label, multi-center phase II trial [abstract 1029P]. Ann. Oncol. 33 (Suppl. 7), S1025–S1026 (2022).

    Article  Google Scholar 

  167. Pang, X. et al. Cadonilimab, a tetravalent PD-1/CTLA-4 bispecific antibody with trans-binding and enhanced target binding avidity. MAbs 15, 2180794 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Gao, X. et al. Safety and antitumour activity of cadonilimab, an anti-PD-1/CTLA-4 bispecific antibody, for patients with advanced solid tumours (COMPASSION-03): a multicentre, open-label, phase 1b/2 trial. Lancet Oncol. 24, 1134–1146 (2023).

    Article  CAS  PubMed  Google Scholar 

  169. Luke, J. J. et al. The PD-1- and LAG-3-targeting bispecific molecule tebotelimab in solid tumors and hematologic cancers: a phase 1 trial. Nat. Med. 29, 2814–2824 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Luke, J. J. et al. A phase I, first-in-human, open-label, dose-escalation study of MGD013, a bispecific DART molecule binding PD-1 and LAG-3, in patients with unresectable or metastatic neoplasms [abstract]. J. Clin. Oncol. 38 (Suppl. 15), 3004 (2020).

    Article  Google Scholar 

  171. Yap, T. A. et al. A phase 1 first-in-human study of FS118, a tetravalent bispecific antibody targeting LAG-3 and PD-L1 in patients with advanced cancer and PD-L1 resistance. Clin. Cancer Res. 29, 888–898 (2023).

    Article  CAS  PubMed  Google Scholar 

  172. Chu, X., Tian, W., Wang, Z., Zhang, J. & Zhou, R. Co-inhibition of TIGIT and PD-1/PD-L1 in cancer immunotherapy: mechanisms and clinical trials. Mol. Cancer 22, 93 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hashimoto, K. CD137 as an attractive T cell co-stimulatory target in the TNFRSF for immuno-oncology drug development. Cancers 13, 2288 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Melero, I., Murillo, O., Dubrot, J., Hervas-Stubbs, S. & Perez-Gracia, J. L. Multi-layered action mechanisms of CD137 (4-1BB)-targeted immunotherapies. Trends Pharmacol. Sci. 29, 383–390 (2008).

    Article  CAS  PubMed  Google Scholar 

  175. Claus, C., Ferrara-Koller, C. & Klein, C. The emerging landscape of novel 4-1BB (CD137) agonistic drugs for cancer immunotherapy. MAbs 15, 2167189 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Prenen, H. et al. Phase 1 dose escalation study of MCLA-145, a bispecific antibody targeting CD137 and PD-L1 in solid tumors [abstract 136p]. Ann. Oncol. 32 (Suppl. 7), S1436 (2021).

    Article  Google Scholar 

  177. Jeong, S. et al. Novel anti-4-1BBxPD-L1 bispecific antibody augments anti-tumor immunity through tumor-directed T-cell activation and checkpoint blockade. J. Immunother. Cancer 9, e002428 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Muik, A. et al. Preclinical characterization and phase I trial results of a bispecific antibody targeting PD-L1 and 4-1BB (GEN1046) in patients with advanced refractory solid tumors. Cancer Discov. 12, 1248–1265 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Yachnin, J. et al. A first-in-human phase I study in patients with advanced and/or refractory solid malignancies to evaluate the safety of ATOR-1015, a CTLA-4 x OX40 bispecific antibody [abstract]. J. Clin. Oncol. 38 (Suppl. 15), 3061 (2020).

    Article  Google Scholar 

  180. Vitale, L. A. et al. Development of CDX-527: a bispecific antibody combining PD-1 blockade and CD27 costimulation for cancer immunotherapy. Cancer Immunol. Immunother. 69, 2125–2137 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Sanborn, R. E. et al. A phase 1 dose-escalation study of a PD-L1xCD27 bispecific antibody CDX-527 in patients with advanced malignancies [abstract]. J. Clin. Oncol. 39 (Suppl. 15), 2585 (2021).

    Article  Google Scholar 

  182. Akce, M. et al. A phase 1 multiple-ascending dose study to evaluate the safety and tolerability of XmAb23104 (PD-1 x ICOS) in subjects with selected advanced solid tumors (DUET-3) [abstract]. J. Clin. Oncol. 40 (Suppl. 16), 2604 (2022).

    Article  Google Scholar 

  183. Jacob, S. & Daud, A. Phase Ib/II study of XmAb23104 (PD1 X ICOS) and XmAb22841 (CTLA-4 X LAG3) combination in metastatic melanoma refractory to prior immune checkpoint inhibitor therapy with and without CNS disease [abstract]. J. Clin. Oncol. 41 (Suppl. 16), TPS9595 (2023).

    Article  Google Scholar 

  184. Li, W., Wang, F., Guo, R., Bian, Z. & Song, Y. Targeting macrophages in hematological malignancies: recent advances and future directions. J. Hematol. Oncol. 15, 110 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Jaiswal, S. et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138, 271–285 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Wang, R. et al. Blockade of dual immune checkpoint inhibitory signals with a CD47/PD-L1 bispecific antibody for cancer treatment. Theranostics 13, 148–160 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Liu, X. et al. Dual targeting of innate and adaptive checkpoints on tumor cells limits immune evasion. Cell Rep. 24, 2101–2111 (2018).

    Article  CAS  PubMed  Google Scholar 

  188. Chen, S. H. et al. Dual checkpoint blockade of CD47 and PD-L1 using an affinity-tuned bispecific antibody maximizes antitumor immunity. J. Immunother. Cancer 9, e003464 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Carneiro, B. A. et al. Phase 1 first-in-human study of PF-07257876, a novel CD47/PD-L1 bispecific checkpoint inhibitor, in patients with PD-1/PD-L1-refractory and -naïve advanced solid tumors [abstract]. J. Clin. Oncol. 41 (Suppl. 16), 2529 (2023).

    Article  Google Scholar 

  190. Yang, J. et al. Preliminary results from a phase I/II study of IMM0306, a CD47 and CD20 bispecific monoclonal antibody-trap, in patients with relapsed or refractory CD20-positive B-cell non-Hodgkin’s lymphoma [abstract]. J. Clin. Oncol. 41 (Suppl. 16), 7527 (2023).

    Article  Google Scholar 

  191. Heil, F. et al. Vanucizumab mode of action: serial biomarkers in plasma, tumor, and skin-wound-healing biopsies. Transl. Oncol. 14, 100984 (2021).

    Article  CAS  PubMed  Google Scholar 

  192. Hidalgo, M. et al. Results from the first-in-human (FIH) phase I study of RO5520985 (RG7221), a novel bispecific human anti-ANG-2/anti-VEGF-A antibody, administered as an intravenous infusion to patients with advanced solid tumors. J. Clin. Oncol. 32 (Suppl. 15), 2525 (2014).

    Article  Google Scholar 

  193. Hidalgo, M. et al. First-in-human phase I study of single-agent vanucizumab, a first-in-class bispecific anti-angiopoietin-2/Anti-VEGF-a antibody, in adult patients with advanced solid tumors. Clin. Cancer Res. 24, 1536–1545 (2018).

    Article  CAS  PubMed  Google Scholar 

  194. Bendell, J. C. et al. The McCAVE trial: vanucizumab plus mFOLFOX-6 versus bevacizumab plus mFOLFOX-6 in patients with previously untreated metastatic colorectal carcinoma (mCRC). Oncologist 25, e451–e459 (2020).

    Article  CAS  PubMed  Google Scholar 

  195. Zhao, Y. et al. AK112, a novel PD-1/VEGF bispecific antibody, in combination with chemotherapy in patients with advanced non-small cell lung cancer (NSCLC): an open-label, multicenter, phase II trial. eClinicalMedicine 62, 102106 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Jo, M. et al. Cross-talk between epidermal growth factor receptor and c-Met signal pathways in transformed cells. J. Biol. Chem. 275, 8806–8811 (2000).

    Article  CAS  PubMed  Google Scholar 

  197. Cooper, A. J., Sequist, L. V. & Lin, J. J. Third-generation EGFR and ALK inhibitors: mechanisms of resistance and management. Nat. Rev. Clin. Oncol. 19, 499–514 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Park, K. et al. Amivantamab in EGFR exon 20 insertion-mutated non-small-cell lung cancer progressing on platinum chemotherapy: initial results from the CHRYSALIS phase I study. J. Clin. Oncol. 39, 3391–3402 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Cho, B. C. et al. Amivantamab, an epidermal growth factor receptor (EGFR) and mesenchymal-epithelial transition factor (MET) bispecific antibody, designed to enable multiple mechanisms of action and broad clinical applications. Clin. Lung Cancer 24, 89–97 (2023).

    Article  CAS  PubMed  Google Scholar 

  200. Zhou, C. et al. Amivantamab plus chemotherapy in NSCLC with EGFR exon 20 insertions. N. Engl. J. Med. 389, 2039–2051 (2023).

    Article  CAS  PubMed  Google Scholar 

  201. Passaro, A. et al. Amivantamab plus chemotherapy with and without lazertinib in EGFR-mutant advanced NSCLC after disease progression on osimertinib: primary results from the phase III MARIPOSA-2 study. Ann. Oncol. 35, 77–90 (2024).

    Article  CAS  PubMed  Google Scholar 

  202. Hill, A. G. et al. Phase II study of the dual EGFR/HER3 inhibitor duligotuzumab (MEHD7945A) versus cetuximab in combination with FOLFIRI in second-line RAS wild-type metastatic colorectal cancer. Clin. Cancer Res. 24, 2276–2284 (2018).

    Article  CAS  PubMed  Google Scholar 

  203. Mazor, Y. et al. Enhanced tumor-targeting selectivity by modulating bispecific antibody binding affinity and format valence. Sci. Rep. 7, 40098 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Juric, D. et al. Safety and pharmacokinetics/pharmacodynamics of the first-in-class dual action HER3/EGFR antibody MEHD7945A in locally advanced or metastatic epithelial tumors. Clin. Cancer Res. 21, 2462–2470 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Fayette, J. et al. Randomized phase II study of duligotuzumab (MEHD7945A) vs. cetuximab in squamous cell carcinoma of the head and neck (MEHGAN study). Front. Oncol. 6, 232 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Meric-Bernstam, F. et al. Zanidatamab, a novel bispecific antibody, for the treatment of locally advanced or metastatic HER2-expressing or HER2-amplified cancers: a phase 1, dose-escalation and expansion study. Lancet Oncol. 23, 1558–1570 (2022).

    Article  CAS  PubMed  Google Scholar 

  207. Harding, J. J. et al. Zanidatamab for HER2-amplified, unresectable, locally advanced or metastatic biliary tract cancer (HERIZON-BTC-01): a multicentre, single-arm, phase 2b study. Lancet Oncol. 24, 772–782 (2023).

    Article  CAS  PubMed  Google Scholar 

  208. Pant, S. et al. Results from the pivotal phase (Ph) 2b HERIZON-BTC-01 study: zanidatamab in previously-treated HER2-amplified biliary tract cancer (BTC) [abstract]. J. Clin. Oncol. 41 (Suppl. 16), 4008 (2023).

    Article  Google Scholar 

  209. Zhang, J. et al. First-in-human HER2-targeted bispecific antibody KN026 for the treatment of patients with HER2-positive metastatic breast cancer: results from a phase i study. Clin. Cancer Res. 28, 618–628 (2022).

    Article  CAS  PubMed  Google Scholar 

  210. Swain, S. M., Shastry, M. & Hamilton, E. Targeting HER2-positive breast cancer: advances and future directions. Nat. Rev. Drug. Discov. 22, 101–126 (2023).

    Article  CAS  PubMed  Google Scholar 

  211. Xu, J. et al. KN026 (anti-HER2 bispecific antibody) in patients with previously treated, advanced HER2-expressing gastric or gastroesophageal junction cancer. Eur. J. Cancer 178, 1–12 (2023).

    Article  PubMed  Google Scholar 

  212. Schram, A. M. et al. Efficacy and safety of zenocutuzumab, a HER2 x HER3 bispecific antibody, across advanced NRG1 fusion (NRG1+) cancers [abstract]. J. Clin. Oncol. 40 (Suppl. 16), 105 (2022).

    Article  Google Scholar 

  213. Schram, A. M. et al. Zenocutuzumab, a HER2xHER3 bispecific antibody, is effective therapy for tumors driven by NRG1 gene rearrangements. Cancer Discov. 12, 1233–1247 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Crescioli, S. et al. Antibodies to watch in 2024. MAbs 16, 2297450 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Mercogliano, M. F., Bruni, S., Mauro, F. L. & Schillaci, R. Emerging targeted therapies for HER2-positive breast cancer. Cancers 15, 1987 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Schubert, I., Stein, C. & Fey, G. H. Dual-targeting for the elimination of cancer cells with increased selectivity. Antibodies 1, 2–18 (2012).

    Article  CAS  Google Scholar 

  217. Sia, H. et al. A phase 1, first-in-human, dose escalation and dose-expansion study of a BCMAxCD38xCD3 targeting trispecific antibody ISB 2001 in subjects with relapsed/refractory multiple myeloma [abstract]. Blood 142 (Suppl. 1), 3396 (2023).

    Article  Google Scholar 

  218. Pillarisetti, R. et al. Characterization of JNJ-79635322, a novel BCMAxGPRC5DxCD3 T-cell redirecting trispecific antibody, for the treatment of multiple myeloma [abstract]. Blood 142 (Suppl. 1), 456 (2023).

    Article  Google Scholar 

  219. Zhao, L. et al. A novel CD19/CD22/CD3 trispecific antibody enhances therapeutic efficacy and overcomes immune escape against B-ALL. Blood 140, 1790–1802 (2022).

    Article  CAS  PubMed  Google Scholar 

  220. Tichet, M. et al. Bispecific PD1-IL2v and anti-PD-L1 break tumor immunity resistance by enhancing stem-like tumor-reactive CD8+ T cells and reprogramming macrophages. Immunity 56, 162–179.e6 (2023).

    Article  CAS  PubMed  Google Scholar 

  221. Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018).

    Article  CAS  PubMed  Google Scholar 

  222. Yi, M. et al. The construction, expression, and enhanced anti-tumor activity of YM101: a bispecific antibody simultaneously targeting TGF-β and PD-L1. J. Hematol. Oncol. 14, 27 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Gameiro, S. R., Strauss, J., Gulley, J. L. & Schlom, J. Preclinical and clinical studies of bintrafusp alfa, a novel bifunctional anti-PD-L1/TGFβRII agent: current status. Exp. Biol. Med. 247, 1124–1134 (2022).

    Article  CAS  Google Scholar 

  224. Cho, B. C. et al. Bintrafusp alfa versus pembrolizumab in patients with treatment-naive, programmed death-ligand 1-high advanced NSCLC: a randomized, open-label, phase 3 trial. J. Thorac. Oncol. 18, 1731–1742 (2023).

    Article  CAS  PubMed  Google Scholar 

  225. Lee, H. et al. Mechanisms of antigen escape from BCMA- or GPRC5D-targeted immunotherapies in multiple myeloma. Nat. Med. 29, 2295–2306 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Gan, H. K., Cvrljevic, A. N. & Johns, T. G. The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. FEBS J. 280, 5350–5370 (2013).

    Article  CAS  PubMed  Google Scholar 

  227. Ruella, M. & Maus, M. V. Catch me if you can: leukemia escape after CD19-directed T cell immunotherapies. Comput. Struct. Biotechnol. J. 14, 357–362 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Elad, J. Relapse and resistance to CAR-T cells and blinatumomab in hematologic malignancies. Clin. Hematol. Int. 1, 79–84 (2019).

    Article  Google Scholar 

  229. Kuchnio, A. et al. Characterization of JNJ-80948543, a novel CD79bxCD20xCD3 trispecific T-cell redirecting antibody for the treatment of B-cell non-Hodgkin lymphoma [abstract]. Blood 140 (Suppl. 1), 3105–3106 (2022).

    Article  Google Scholar 

  230. van de Donk, N. W. C. J., O’Neill, C., de Ruijter, M. E. M., Verkleij, C. P. M. & Zweegman, S. T-cell redirecting bispecific and trispecific antibodies in multiple myeloma beyond BCMA. Curr. Opin. Oncol. 35, 601–611 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Banaszek, A. et al. On-target restoration of a split T cell-engaging antibody for precision immunotherapy. Nat. Commun. 10, 5387 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Dickopf, S. et al. Prodrug-activating chain exchange (PACE) converts targeted prodrug derivatives to functional bi- or multispecific antibodies. Biol. Chem. 403, 495–508 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Yarchoan, M., Johnson, B. A. III, Lutz, E. R., Laheru, D. A. & Jaffee, E. M. Targeting neoantigens to augment antitumour immunity. Nat. Rev. Cancer 17, 209–222 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. De Mattos-Arruda, L. et al. Neoantigen prediction and computational perspectives towards clinical benefit: recommendations from the ESMO Precision Medicine Working Group. Ann. Oncol. 31, 978–990 (2020).

    Article  PubMed  Google Scholar 

  235. Trenevska, I., Li, D. & Banham, A. H. Therapeutic antibodies against intracellular tumor antigens. Front. Immunol. 8, 1001 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Augsberger, C. et al. Targeting intracellular WT1 in AML with a novel RMF-peptide-MHC-specific T-cell bispecific antibody. Blood 138, 2655–2669 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Hutchings, M. et al. Dose escalation of HLA-A2-WT1 CD3 T-cell bispecific antibody in a phase I study in patients with relapsed/refractory acute myeloid leukemia (AML) [abstract]. Blood 142 (Suppl. 1), 1537 (2023).

    Article  Google Scholar 

  238. Klebanoff, C. A., Chandran, S. S., Baker, B. M., Quezada, S. A. & Ribas, A. T cell receptor therapeutics: immunological targeting of the intracellular cancer proteome. Nat. Rev. Drug. Discov. 22, 996–1017 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Oates, J., Hassan, N. J. & Jakobsen, B. K. ImmTACs for targeted cancer therapy: why, what, how, and which. Mol. Immunol. 67, 67–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  240. Nathan, P. et al. Overall survival benefit with tebentafusp in metastatic uveal melanoma. N. Engl. J. Med. 385, 1196–1206 (2021).

    Article  CAS  PubMed  Google Scholar 

  241. Dhillon, S. Tebentafusp: first approval. Drugs 82, 703–710 (2022).

    Article  CAS  PubMed  Google Scholar 

  242. Panchal, A. et al. COBRA™: a highly potent conditionally active T cell engager engineered for the treatment of solid tumors. MAbs 12, 1792130 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Boustany, L. M. et al. A probody T cell-engaging bispecific antibody targeting EGFR and CD3 inhibits colon cancer growth with limited toxicity. Cancer Res. 82, 4288–4298 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Lucchi, R., Bentanachs, J. & Oller-Salvia, B. The masking game: design of activatable antibodies and mimetics for selective therapeutics and cell control. ACS Cent. Sci. 7, 724–738 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Crespo, J., Sun, H., Welling, T. H., Tian, Z. & Zou, W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr. Opin. Immunol. 25, 214–221 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Philipp, N. et al. T-cell exhaustion induced by continuous bispecific molecule exposure is ameliorated by treatment-free intervals. Blood 140, 1104–1118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Grywalska, E., Pasiarski, M., Gozdz, S. & Rolinski, J. Immune-checkpoint inhibitors for combating T-cell dysfunction in cancer. Onco Targets Ther. 11, 6505–6524 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Jiang, Y., Li, Y. & Zhu, B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 6, e1792 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Farhangnia, P., Ghomi, S. M., Akbarpour, M. & Delbandi, A. A. Bispecific antibodies targeting CTLA-4: game-changer troopers in cancer immunotherapy. Front. Immunol. 14, 1155778 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Codarri Deak, L. et al. PD-1-cis IL-2R agonism yields better effectors from stem-like CD8+ T cells. Nature 610, 161–172 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Codarri Deak, L., Hashimoto, M., Umaña, P. & Klein, C. Beyond checkpoint inhibition: PD-1 cis-targeting of an IL-2Rβγ-biased interleukin-2 variant as a novel approach to build on checkpoint inhibition. Oncoimmunology 12, 2197360 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Correnti, C. E. et al. Simultaneous multiple interaction T-cell engaging (SMITE) bispecific antibodies overcome bispecific T-cell engager (BiTE) resistance via CD28 co-stimulation. Leukemia 32, 1239–1243 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Zhang, Z. et al. Pan-cancer landscape of T-cell exhaustion heterogeneity within the tumor microenvironment revealed a progressive roadmap of hierarchical dysfunction associated with prognosis and therapeutic efficacy. EBioMedicine 83, 104207 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Tietscher, S. et al. A comprehensive single-cell map of T cell exhaustion-associated immune environments in human breast cancer. Nat. Commun. 14, 98 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Nieto, Y. et al. Innate cell engager (ICE®) AFM13 combined with preactivated and expanded (P+E) cord blood (CB)-derived natural killer (NK) cells for patients with refractory CD30-positive lymphomas: final results [abstract]. Blood 142 (Suppl. 1), 774 (2023).

    Article  Google Scholar 

  256. Nisonoff, A. & Rivers, M. M. Recombination of a mixture of univalent antibody fragments of different specificity. Arch. Biochem. Biophys. 93, 460–462 (1961).

    Article  CAS  PubMed  Google Scholar 

  257. Milstein, C. & Cuello, A. C. Hybrid hybridomas and their use in immunohistochemistry. Nature 305, 537–540 (1983).

    Article  CAS  PubMed  Google Scholar 

  258. Kohler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Article  CAS  PubMed  Google Scholar 

  259. Pantoliano, M. W. et al. Conformational stability, folding, and ligand-binding affinity of single-chain Fv immunoglobulin fragments expressed in Escherichia coli. Biochemistry 30, 10117–10125 (1991).

    Article  CAS  PubMed  Google Scholar 

  260. Bird, R. E. & Walker, B. W. Single chain antibody variable regions. Trends Biotechnol. 9, 132–137 (1991).

    Article  CAS  PubMed  Google Scholar 

  261. Baeuerle, P. A. & Reinhardt, C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res. 69, 4941–4944 (2009).

    Article  CAS  PubMed  Google Scholar 

  262. Goebeler, M. E. & Bargou, R. C. T cell-engaging therapies – BiTEs and beyond. Nat. Rev. Clin. Oncol. 17, 418–434 (2020).

    Article  PubMed  Google Scholar 

  263. Dreier, T. et al. T cell costimulus-independent and very efficacious inhibition of tumor growth in mice bearing subcutaneous or leukemic human B cell lymphoma xenografts by a CD19-/CD3-bispecific single-chain antibody construct. J. Immunol. 170, 4397–4402 (2003).

    Article  CAS  PubMed  Google Scholar 

  264. Hoffmann, P. et al. Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. Int. J. Cancer 115, 98–104 (2005).

    Article  CAS  PubMed  Google Scholar 

  265. Löffler, A. et al. A recombinant bispecific single-chain antibody, CD19 x CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood 95, 2098–2103 (2000).

    Article  PubMed  Google Scholar 

  266. Linke, R., Klein, A. & Seimetz, D. Catumaxomab: clinical development and future directions. MAbs 2, 129–136 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors particularly thank A. Wenzl from the University Hospital Würzburg for graphic design support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Maria-Elisabeth Goebeler.

Ethics declarations

Competing interests

M.-E.G. has acted as a consultant and/or adviser to Amgen, AvenCell, Bristol-Myers Squibb, Janssen-Cilag, Novartis and Roche. G.S. holds patents on the hemibody technology and has acted as a consultant to Veraxa Biotech GmbH. R.C.B. has acted as a consultant and/or adviser to Amgen, Avencell, Bristol-Myers Squibb Catalym, Janssen-Cilag, Novartis and Roche, and holds a patent for blinatumomab, from which he receives royalties.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks S. Champiat, M. Hutchings, M. Subklewe and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Bispecific Antibody Development Programs Guidance for Industry: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bispecific-antibody-development-programs-guidance-industry.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goebeler, ME., Stuhler, G. & Bargou, R. Bispecific and multispecific antibodies in oncology: opportunities and challenges. Nat Rev Clin Oncol 21, 539–560 (2024). https://doi.org/10.1038/s41571-024-00905-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-024-00905-y

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research