Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The importance of 3D fibre architecture in cancer and implications for biomaterial model design

Abstract

The need for improved prediction of clinical response is driving the development of cancer models with enhanced physiological relevance. A new concept of ‘precision biomaterials’ is emerging, encompassing patient-mimetic biomaterial models that seek to accurately detect, treat and model cancer by faithfully recapitulating key microenvironmental characteristics. Despite recent advances allowing tissue-mimetic stiffness and molecular composition to be replicated in vitro, approaches for reproducing the 3D fibre architectures found in tumour extracellular matrix (ECM) remain relatively unexplored. Although the precise influences of patient-specific fibre architecture are unclear, we summarize the known roles of tumour fibre architecture, underlining their implications in cell–matrix interactions and ultimately clinical outcome. We then explore the challenges in reproducing tissue-specific 3D fibre architecture(s) in vitro, highlighting relevant biomaterial fabrication techniques and their benefits and limitations. Finally, we discuss imaging and image analysis techniques (focussing on collagen I-optimized approaches) that could hold the key to mapping tumour-specific ECM into high-fidelity biomaterial models. We anticipate that an interdisciplinary approach, combining materials science, cancer research and image analysis, will elucidate the role of 3D fibre architecture in tumour development, leading to the next generation of patient-mimetic models for mechanistic studies and drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Approaches for designing and fabricating precision biomaterials with tissue-matched 3D fibre architecture.
Fig. 2: Fibre architecture varies across cancers of various origins, showing correlations with various outcomes.
Fig. 3: Approaches for control of fibre architecture through biomaterial fabrication.

Similar content being viewed by others

References

  1. Theocharis, A. D., Manou, D. & Karamanos, N. K. The extracellular matrix as a multitasking player in disease. FEBS J. 286, 2830–2869 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Pickup, M. W., Mouw, J. K. & Weaver, V. M. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 15, 1243–1253 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cox, T. R. & Erler, J. T. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis. Models Mech. 4, 165–178 (2011).

    Article  CAS  Google Scholar 

  4. Daley, W. P., Peters, S. B. & Larsen, M. Extracellular matrix dynamics in development and regenerative medicine. J. Cell Sci. 121, 255–264 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Naba, A. et al. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol. Cell. Proteom. 11, M111.014647 (2012). This paper details proteomic strategies to characterize normal and tumour extracellular matrix composition to facilitate broader application of these methods for studying disease.

    Article  Google Scholar 

  6. Chen, S. et al. Cancer-associated fibroblasts suppress SOX2-induced dysplasia in a lung squamous cancer coculture. Proc. Natl Acad. Sci. USA 115, E11671–E11680 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fischbach, C. et al. Engineering tumors with 3D scaffolds. Nat. Methods 4, 855–860 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Riedl, A. et al. Comparison of cancer cells in 2D vs 3D culture reveals differences in AKT-mTOR-S6K signaling and drug responses. J. Cell Sci. 130, 203–218 (2017).

    CAS  PubMed  Google Scholar 

  9. Yamada, K. M. & Cukierman, E. Modeling tissue morphogenesis and cancer in 3D. Cell 130, 601–610 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Baker, B. M. & Chen, C. S. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125, 3015–3024 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Caballero, D. et al. Precision biomaterials in cancer theranostics and modelling. Biomaterials 280, 121299 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Curvello, R., Kast, V., Ordóñez-Morán, P., Mata, A. & Loessner, D. Biomaterial-based platforms for tumour tissue engineering. Nat. Rev. Mater. 8, 314–330 (2023).

    Article  CAS  Google Scholar 

  13. Sievers, J., Mahajan, V., Welzel, P. B., Werner, C. & Taubenberger, A. Precision hydrogels for the study of cancer cell mechanobiology. Adv. Healthc. Mater. 12, e2202514 (2023).

    Article  PubMed  Google Scholar 

  14. Mullard, A. R&D re-balancing act. Nat. Rev. Drug Discov. 22, 258 (2023).

    PubMed  Google Scholar 

  15. Brancato, V., Oliveira, J. M., Correlo, V. M., Reis, R. L. & Kundu, S. C. Could 3D models of cancer enhance drug screening? Biomaterials 232, 119744 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Rodenhizer, D., Dean, T., D’Arcangelo, E. & McGuigan, A. P. The current landscape of 3D in vitro tumor models: what cancer hallmarks are accessible for drug discovery? Adv. Healthc. Mater. 7, e1701174 (2018).

    Article  PubMed  Google Scholar 

  17. Ashworth, J. C. et al. Peptide gels of fully-defined composition and mechanics for probing cell-cell and cell-matrix interactions in vitro. Matrix Biol. 85–86, 15–33 (2020).

    Article  PubMed  Google Scholar 

  18. Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–564 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Micalet, A., Moeendarbary, E. & Cheema, U. 3D in vitro models for investigating the role of stiffness in cancer invasion. ACS Biomater. Sci. Eng. 9, 3729–3741 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Sokol, E. S. et al. Growth of human breast tissues from patient cells in 3D hydrogel scaffolds. Breast Cancer Res. 18, 19 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bonnans, C., Chou, J. & Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15, 786–801 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Winkler, J., Abisoye-Ogunniyan, A., Metcalf, K. J. & Werb, Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat. Commun. 11, 5120 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Malik, R., Lelkes, P. I. & Cukierman, E. Biomechanical and biochemical remodeling of stromal extracellular matrix in cancer. Trends Biotechnol. 33, 230–236 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, S. et al. Differentially expressed genes regulating the progression of ductal carcinoma in situ to invasive breast cancer. Cancer Res. 72, 4574–4586 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Naba, A., Clauser, K. R., Lamar, J. M., Carr, S. A. & Hynes, R. O. Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters. eLife 3, e01308 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tian, C. et al. Proteomic analyses of ECM during pancreatic ductal adenocarcinoma progression reveal different contributions by tumor and stromal cells. Proc. Natl Acad. Sci. USA 116, 19609–19618 (2019). This research demonstrates that individual matrisome proteins derived from pancreatic cancer stromal cells or from cancer cells differentially correlate with patient outcome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tian, C. et al. Cancer cell-derived matrisome proteins promote metastasis in pancreatic ductal adenocarcinoma. Cancer Res. 80, 1461–1474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ting, D. T. et al. Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep. 8, 1905–1918 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vargas, A. C. et al. Gene expression profiling of tumour epithelial and stromal compartments during breast cancer progression. Breast Cancer Res. Treat. 135, 153–165 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Chitty, J. L. et al. A first-in-class pan-lysyl oxidase inhibitor impairs stromal remodeling and enhances gemcitabine response and survival in pancreatic cancer. Nat. Cancer 4, 1326–1344 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009). This article demonstrates that collagen crosslinking and stiffening underpins breast tumorigenesis, highlighting how collagen architecture influences breast cancer malignancy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, D. & Hornsby, P. J. Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Res. 67, 3117–3126 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Mangala, L. S., Fok, J. Y., Zorrilla-Calancha, I. R., Verma, A. & Mehta, K. Tissue transglutaminase expression promotes cell attachment, invasion and survival in breast cancer cells. Oncogene 26, 2459–2470 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Shinde, A. et al. Transglutaminase-2 facilitates extracellular vesicle-mediated establishment of the metastatic niche. Oncogenesis 9, 16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Acerbi, I. et al. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr. Biol. 7, 1120–1134 (2015).

    Article  CAS  Google Scholar 

  37. Goetz, J. G. et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146, 148–163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Provenzano, P. P., Inman, D. R., Eliceiri, K. W., Trier, S. M. & Keely, P. J. Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys. J. 95, 5374–5384 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Conklin, M. W. et al. Collagen alignment as a predictor of recurrence after ductal carcinoma in situ. Cancer Epidemiol. Biomark. Prev. 27, 138–145 (2018).

    Article  CAS  Google Scholar 

  40. Piersma, B., Hayward, M.-K. & Weaver, V. M. Fibrosis and cancer: a strained relationship. Biochim. Biophys. Acta Rev. Cancer 1873, 188356 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brauchle, E. et al. Biomechanical and biomolecular characterization of extracellular matrix structures in human colon carcinomas. Matrix Biol. 68–69, 180–193 (2018).

    Article  PubMed  Google Scholar 

  42. Bredfeldt, J. S. et al. Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer. J. Biomed. Opt. 19, 16007 (2014).

    Article  PubMed  Google Scholar 

  43. Guo, Y. P. et al. Growth factors and stromal matrix proteins associated with mammographic densities. Cancer Epidemiol. Biomark. Prev. 10, 243–248 (2001).

    CAS  Google Scholar 

  44. McCormack, V. A. & dos Santos Silva, I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol. Biomark. Prev. 15, 1159–1169 (2006).

    Article  Google Scholar 

  45. McConnell, J. C. et al. Increased peri-ductal collagen micro-organization may contribute to raised mammographic density. Breast Cancer Res. 18, 5 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Provenzano, P. P. et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4, 38 (2006). This is a landmark paper defining the three TACS that have since been shown to be diagnostic and prognostic of disease progression and outcome.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Conklin, M. W. et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am. J. Pathol. 178, 1221–1232 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Xi, G. et al. Large-scale tumor-associated collagen signatures identify high-risk breast cancer patients. Theranostics 11, 3229–3243 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ray, A. et al. Stromal architecture directs early dissemination in pancreatic ductal adenocarcinoma. JCI Insight 7, e150330 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kirkpatrick, N. D., Brewer, M. A. & Utzinger, U. Endogenous optical biomarkers of ovarian cancer evaluated with multiphoton microscopy. Cancer Epidemiol. Biomark. Prev. 16, 2048–2057 (2007).

    Article  CAS  Google Scholar 

  51. Wen, B. et al. 3D texture analysis for classification of second harmonic generation images of human ovarian cancer. Sci. Rep. 6, 35734 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sendín-Martín, M. et al. Quantitative collagen analysis using second harmonic generation images for the detection of basal cell carcinoma with ex vivo multiphoton microscopy. Exp. Dermatol. 32, 392–402 (2023).

    Article  PubMed  Google Scholar 

  53. Laklai, H. et al. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat. Med. 22, 497–505 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Almici, E. et al. Quantitative image analysis of fibrillar collagens reveals novel diagnostic and prognostic biomarkers and histotype-dependent aberrant mechanobiology in lung cancer. Mod. Pathol. 36, 100155 (2023).

    Article  PubMed  Google Scholar 

  55. Ikuta, D. et al. Fibrosis in metastatic lymph nodes is clinically correlated to poor prognosis in colorectal cancer. Oncotarget 9, 29574–29586 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pearce, O. M. T. et al. Deconstruction of a metastatic tumor microenvironment reveals a common matrix response in human cancers. Cancer Discov. 8, 304–319 (2018). This study demonstrates that multi-omics characterization of the evolving human metastatic microenvironment from patient samples can be used to define matrisome signatures distinguishing patients with a shorter overall survival in ovarian and 12 other primary solid cancers.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, C. et al. Fibrotic microenvironment promotes the metastatic seeding of tumor cells via activating the fibronectin 1/secreted phosphoprotein 1-integrin signaling. Oncotarget 7, 45702–45714 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Erler, J. T. et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15, 35–44 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cox, T. R. et al. LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Cancer Res. 73, 1721–1732 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Afasizheva, A. et al. Mitogen-activated protein kinase signaling causes malignant melanoma cells to differentially alter extracellular matrix biosynthesis to promote cell survival. BMC Cancer 16, 186 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Farmer, P. et al. A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat. Med. 15, 68–74 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Principe, D. R. et al. Long-term gemcitabine treatment reshapes the pancreatic tumor microenvironment and sensitizes murine carcinoma to combination immunotherapy. Cancer Res. 80, 3101–3115 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shen, C. J. et al. Ionizing radiation induces tumor cell lysyl oxidase secretion. BMC Cancer 14, 532 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Barker, H. E., Paget, J. T. E., Khan, A. A. & Harrington, K. J. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat. Rev. Cancer 15, 409–425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mancini, M. L. & Sonis, S. T. Mechanisms of cellular fibrosis associated with cancer regimen-related toxicities. Front. Pharmacol. 5, 51 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Berestjuk, I. et al. Targeting discoidin domain receptors DDR1 and DDR2 overcomes matrix-mediated tumor cell adaptation and tolerance to BRAF-targeted therapy in melanoma. EMBO Mol. Med. 14, e11814 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Cuzick, J., Warwick, J., Pinney, E., Warren, R. M. L. & Duffy, S. W. Tamoxifen and breast density in women at increased risk of breast cancer. J. Natl Cancer Inst. 96, 621–628 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Rhim, A. D. et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25, 735–747 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Maller, O. et al. Collagen architecture in pregnancy-induced protection from breast cancer. J. Cell Sci. 126, 4108–4110 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chandler, C., Liu, T., Buckanovich, R. & Coffman, L. G. The double edge sword of fibrosis in cancer. Transl. Res. 209, 55–67 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dibus, M., Joshi, O. & Ivaska, J. Novel tools to study cell-ECM interactions, cell adhesion dynamics and migration. Curr. Opin. Cell Biol. 88, 102355 (2024).

    Article  PubMed  Google Scholar 

  72. Humphries, J. D., Byron, A. & Humphries, M. J. Integrin ligands at a glance. J. Cell Sci. 119, 3901–3903 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Ray, A. & Provenzano, P. P. Aligned forces: origins and mechanisms of cancer dissemination guided by extracellular matrix architecture. Curr. Opin. Cell Biol. 72, 63–71 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Friedl, P. & Wolf, K. Plasticity of cell migration: a multiscale tuning model. J. Cell Biol. 188, 11–19 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hayen, W., Goebeler, M., Kumar, S., Riessen, R. & Nehls, V. Hyaluronan stimulates tumor cell migration by modulating the fibrin fiber architecture. J. Cell Sci. 112, 2241–2251 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Murphy, C. M. & O’Brien, F. J. Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhes. Migr. 4, 377–381 (2010).

    Article  Google Scholar 

  77. Paul, C. D., Mistriotis, P. & Konstantopoulos, K. Cancer cell motility: lessons from migration in confined spaces. Nat. Rev. Cancer 17, 131–140 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Short, B. Testing the limits of cell migration. J. Cell Biol. 201, 965 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  79. Wolf, K. et al. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201, 1069–1084 (2013). This study describes the relationship between tumour fibre architecture and cell migration by identifying critical pore sizes at which migration is inhibited.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fischer, R. S. et al. Contractility, focal adhesion orientation, and stress fiber orientation drive cancer cell polarity and migration along wavy ECM substrates. Proc. Natl Acad. Sci. USA 118, e2021135118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zanotelli, M. R. et al. Regulation of ATP utilization during metastatic cell migration by collagen architecture. Mol. Biol. Cell 29, 1–9 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Madamanchi, A., Zijlstra, A. & Zutter, M. M. Flipping the switch: integrin switching provides metastatic competence. Sci. Signal. 7, pe9 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Samaržija, I. et al. Integrin crosstalk contributes to the complexity of signalling and unpredictable cancer cell fates. Cancers 12, 1910 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Di Martino, J. et al. The microenvironment controls invadosome plasticity. J. Cell Sci. 129, 1759–1768 (2016).

    Article  PubMed  Google Scholar 

  85. Panková, K., Rösel, D., Novotný, M. & Brábek, J. The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell. Mol. Life Sci. 67, 63–71 (2010).

    Article  PubMed  Google Scholar 

  86. Haeger, A., Krause, M., Wolf, K. & Friedl, P. Cell jamming: collective invasion of mesenchymal tumor cells imposed by tissue confinement. Biochim. Biophys. Acta 1840, 2386–2395 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Weigelin, B., Bakker, G.-J. & Friedl, P. Intravital third harmonic generation microscopy of collective melanoma cell invasion. Intravital 1, 32–43 (2012).

    Article  PubMed  Google Scholar 

  88. Ilina, O. et al. Cell-cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion. Nat. Cell Biol. 22, 1103–1115 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Khalil, A. A. et al. Collective invasion in ductal and lobular breast cancer associates with distant metastasis. Clin. Exp. Metastasis 34, 421–429 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Provenzano, P. P. et al. Collagen density promotes mammary tumor initiation and progression. BMC Med. 6, 11 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Gaggioli, C. et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell Biol. 9, 1392–1400 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Du, W., Xia, X., Hu, F. & Yu, J. Extracellular matrix remodeling in the tumor immunity. Front. Immunol. 14, 1340634 (2023).

    Article  CAS  PubMed  Google Scholar 

  93. Yuan, Z. et al. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol. Cancer 22, 48 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kuczek, D. E. et al. Collagen density regulates the activity of tumor-infiltrating T cells. J. Immunother. Cancer 7, 68 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Salmon, H. et al. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J. Clin. Invest. 122, 899–910 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Byers, C. et al. Tertiary lymphoid structures accompanied by fibrillary matrix morphology impact anti-tumor immunity in basal cell carcinomas. Front. Med. 9, 981074 (2022).

    Article  Google Scholar 

  97. Netti, P. A., Berk, D. A., Swartz, M. A., Grodzinsky, A. J. & Jain, R. K. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 60, 2497–2503 (2000).

    CAS  PubMed  Google Scholar 

  98. Reyes-Ramos, A. M. et al. Collagen I fibrous substrates modulate the proliferation and secretome of estrogen receptor-positive breast tumor cells in a hormone-restricted microenvironment. ACS Biomater. Sci. Eng. 7, 2430–2443 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gomez, D., Natan, S., Shokef, Y. & Lesman, A. Mechanical interaction between cells facilitates molecular transport. Adv. Biosys. 3, e1900192 (2019).

    Article  PubMed  Google Scholar 

  100. Wijeratne, P. A., Hipwell, J. H., Hawkes, D. J., Stylianopoulos, T. & Vavourakis, V. Multiscale biphasic modelling of peritumoural collagen microstructure: the effect of tumour growth on permeability and fluid flow. PLoS ONE 12, e0184511 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Jana, A., Ladner, K., Lou, E. & Nain, A. S. Tunneling nanotubes between cells migrating in ECM mimicking fibrous environments. Cancers 14, 1989 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Rustom, A., Saffrich, R., Markovic, I., Walther, P. & Gerdes, H.-H. Nanotubular highways for intercellular organelle transport. Science 303, 1007–1010 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Mierke, C. T. Viscoelasticity, like forces, plays a role in mechanotransduction. Front. Cell Dev. Biol. 10, 789841 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584, 535–546 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang, H., Abhilash, A. S., Chen, C. S., Wells, R. G. & Shenoy, V. B. Long-range force transmission in fibrous matrices enabled by tension-driven alignment of fibers. Biophys. J. 107, 2592–2603 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Seo, B. R. et al. Collagen microarchitecture mechanically controls myofibroblast differentiation. Proc. Natl Acad. Sci. USA 117, 11387–11398 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fattet, L. et al. Matrix rigidity controls epithelial-mesenchymal plasticity and tumor metastasis via a mechanoresponsive EPHA2/LYN complex. Dev. Cell 54, 302–316.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Su, C.-Y. et al. Tumor stromal topography promotes chemoresistance in migrating breast cancer cell clusters. Biomaterials 298, 122128 (2023).

    Article  CAS  PubMed  Google Scholar 

  109. Pradhan, S., Hassani, I., Clary, J. M. & Lipke, E. A. Polymeric biomaterials for in vitro cancer tissue engineering and drug testing applications. Tissue Eng. B Rev. 22, 470–484 (2016).

    Article  CAS  Google Scholar 

  110. Caliari, S. R. & Burdick, J. A. A practical guide to hydrogels for cell culture. Nat. Methods 13, 405–414 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Unnikrishnan, K., Thomas, L. V. & Ram Kumar, R. M. Advancement of scaffold-based 3D cellular models in cancer tissue engineering: an update. Front. Oncol. 11, 733652 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Passaniti, A., Kleinman, H. K. & Martin, G. R. Matrigel: history/background, uses, and future applications. J. Cell Commun. Signal. 16, 621–626 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Sachs, N. et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172, 373–386.e10 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Kaur, S., Kaur, I., Rawal, P., Tripathi, D. M. & Vasudevan, A. Non-Matrigel scaffolds for organoid cultures. Cancer Lett. 504, 58–66 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Curtis, K. J. et al. Mechanical stimuli and matrix properties modulate cancer spheroid growth in three-dimensional gelatin culture. J. R. Soc. Interface 17, 20200568 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Linke, F. et al. 3D hydrogels reveal medulloblastoma subgroup differences and identify extracellular matrix subtypes that predict patient outcome. J. Pathol. 253, 326–338 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Qiao, S.-P. et al. An alginate-based platform for cancer stem cell research. Acta Biomater. 37, 83–92 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Vining, K. H., Stafford, A. & Mooney, D. J. Sequential modes of crosslinking tune viscoelasticity of cell-instructive hydrogels. Biomaterials 188, 187–197 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Nam, S., Hu, K. H., Butte, M. J. & Chaudhuri, O. Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels. Proc. Natl Acad. Sci. USA 113, 5492–5497 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tse, J. R. & Engler, A. J. Preparation of hydrogel substrates with tunable mechanical properties. Curr. Protoc. Cell Biol. https://doi.org/10.1002/0471143030.cb1016s47 (2010).

  121. Levental, I., Georges, P. C. & Janmey, P. A. Soft biological materials and their impact on cell function. Soft Matter 3, 299–306 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Ashworth, J. C. et al. Preparation of a user-defined peptide gel for controlled 3D culture models of cancer and disease. J. Vis. Exp. https://doi.org/10.3791/61710 (2020).

  123. Gjorevski, N. & Lutolf, M. P. Synthesis and characterization of well-defined hydrogel matrices and their application to intestinal stem cell and organoid culture. Nat. Protoc. 12, 2263–2274 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Richardson, T. et al. Engineered peptide modified hydrogel platform for propagation of human pluripotent stem cells. Acta Biomater. 113, 228–239 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Rekad, Z., Izzi, V., Lamba, R., Ciais, D. & Van Obberghen-Schilling, E. The alternative matrisome: alternative splicing of ECM proteins in development, homeostasis and tumor progression. Matrix Biol. 111, 26–52 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Mredha, M. T. I. et al. A facile method to fabricate anisotropic hydrogels with perfectly aligned hierarchical fibrous structures. Adv. Mater. https://doi.org/10.1002/adma.201704937 (2018).

  127. Prince, E., Chen, Z., Khuu, N. & Kumacheva, E. Nanofibrillar hydrogel recapitulates changes occurring in the fibrotic extracellular matrix. Biomacromolecules 22, 2352–2362 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. McCoy, M. G., Seo, B. R., Choi, S. & Fischbach, C. Collagen I hydrogel microstructure and composition conjointly regulate vascular network formation. Acta Biomater. 44, 200–208 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Oh, S., Nguyen, Q. D., Chung, K.-H. & Lee, H. Bundling of collagen fibrils using sodium sulfate for biomimetic cell culturing. ACS Omega 5, 3444–3452 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Feng, C., Cheng, Y. & Chao, P. G. The influence and interactions of substrate thickness, organization and dimensionality on cell morphology and migration. Acta Biomater. 9, 5502–5510 (2013).

    Article  PubMed  Google Scholar 

  131. Nerger, B. A., Brun, P. T. & Nelson, C. M. Marangoni flows drive the alignment of fibrillar cell-laden hydrogels. Sci. Adv. 6, eaaz7748 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mredha, M. T. I. et al. Anisotropic tough double network hydrogel from fish collagen and its spontaneous in vivo bonding to bone. Biomaterials 132, 85–95 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Wallace, M., Cardoso, A. Z., Frith, W. J., Iggo, J. A. & Adams, D. J. Magnetically aligned supramolecular hydrogels. Chem. Eur. J. 20, 16484–16487 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Abalymov, A., Pinchasik, B.-E., Akasov, R. A., Lomova, M. & Parakhonskiy, B. V. Strategies for anisotropic fibrillar hydrogels: design, cell alignment, and applications in tissue engineering. Biomacromolecules 24, 4532–4552 (2023).

    Article  CAS  PubMed  Google Scholar 

  135. Taufalele, P. V., VanderBurgh, J. A., Muñoz, A., Zanotelli, M. R. & Reinhart-King, C. A. Fiber alignment drives changes in architectural and mechanical features in collagen matrices. PLoS ONE 14, e0216537 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sapudom, J. et al. The phenotype of cancer cell invasion controlled by fibril diameter and pore size of 3D collagen networks. Biomaterials 52, 367–375 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Riching, K. M. et al. 3D collagen alignment limits protrusions to enhance breast cancer cell persistence. Biophys. J. 107, 2546–2558 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Su, C.-Y. et al. Engineering a 3D collective cancer invasion model with control over collagen fiber alignment. Biomaterials 275, 120922 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Vader, D., Kabla, A., Weitz, D. & Mahadevan, L. Strain-induced alignment in collagen gels. PLoS ONE 4, e5902 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Liu, C. et al. Self-assembly of mesoscale collagen architectures and applications in 3D cell migration. Acta Biomater. 155, 167–181 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Gong, X., Kulwatno, J. & Mills, K. L. Rapid fabrication of collagen bundles mimicking tumor-associated collagen architectures. Acta Biomater. 108, 128–141 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Dewavrin, J.-Y., Hamzavi, N., Shim, V. P. W. & Raghunath, M. Tuning the architecture of three-dimensional collagen hydrogels by physiological macromolecular crowding. Acta Biomater. 10, 4351–4359 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Saiani, A. et al. Self-assembly and gelation properties of α-helix versus β-sheet forming peptides. Soft Matter 5, 193–202 (2009).

    Article  CAS  Google Scholar 

  144. Xie, J., Bao, M., Bruekers, S. M. C. & Huck, W. T. S. Collagen gels with different fibrillar microarchitectures elicit different cellular responses. ACS Appl. Mater. Interfaces 9, 19630–19637 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Plou, J. et al. From individual to collective 3D cancer dissemination: roles of collagen concentration and TGF-β. Sci. Rep. 8, 12723 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Berger, A. J., Linsmeier, K. M., Kreeger, P. K. & Masters, K. S. Decoupling the effects of stiffness and fiber density on cellular behaviors via an interpenetrating network of gelatin-methacrylate and collagen. Biomaterials 141, 125–135 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Velez, D. O. et al. 3D collagen architecture induces a conserved migratory and transcriptional response linked to vasculogenic mimicry. Nat. Commun. 8, 1651 (2017). This article demonstrates the application of molecular crowding to achieve independent control over fibre architecture and collagen hydrogel stiffness, to show that matrix architecture (pore size and fibre length) regulates β1-integrin signalling and cancer cell motility.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ranamukhaarachchi, S. K. et al. Macromolecular crowding tunes 3D collagen architecture and cell morphogenesis. Biomater. Sci. 7, 618–633 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Cavo, M. et al. Electrospun nanofibers in cancer research: from engineering of in vitro 3D cancer models to therapy. Biomater. Sci. 8, 4887–4905 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Fong, E. L. S. et al. Modeling Ewing sarcoma tumors in vitro with 3D scaffolds. Proc. Natl Acad. Sci. USA 110, 6500–6505 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ameer, J. M., Pr, A. K. & Kasoju, N. Strategies to tune electrospun scaffold porosity for effective cell response in tissue engineering. J. Funct. Biomater. 10, 30 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Saha, S. et al. Electrospun fibrous scaffolds promote breast cancer cell alignment and epithelial-mesenchymal transition. Langmuir 28, 2028–2034 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. Wang, K. et al. Creation of macropores in electrospun silk fibroin scaffolds using sacrificial PEO-microparticles to enhance cellular infiltration. J. Biomed. Mater. Res. A 101, 3474–3481 (2013).

    Article  PubMed  Google Scholar 

  154. Yucheng, Y., Glubay, S., Stirling, R., Ma, Q. & McKenzie, J. Improved fiber control through ohmic/convective flow behavior. J. Mater. Sci. 57, 10457–10469 (2022).

    Article  CAS  Google Scholar 

  155. Wang, M. et al. Regulating mechanotransduction in three dimensions using sub‐cellular scale, crosslinkable fibers of controlled diameter, stiffness, and alignment. Adv. Funct. Mater. https://doi.org/10.1002/adfm.201808967 (2019).

  156. Hoogenkamp, H. R. et al. Directing collagen fibers using counter-rotating cone extrusion. Acta Biomater. 12, 113–121 (2015).

    Article  CAS  PubMed  Google Scholar 

  157. Yang, S. et al. Oriented collagen fiber membranes formed through counter-rotating extrusion and their application in tendon regeneration. Biomaterials 207, 61–75 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Hong, J., Yeo, M., Yang, G. H. & Kim, G. Cell-electrospinning and its application for tissue engineering. Int. J. Mol. Sci. 20, 6208 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Grossman, M. et al. Tumor cell invasion can be blocked by modulators of collagen fibril alignment that control assembly of the extracellular matrix. Cancer Res. 76, 4249–4258 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Visser, D. et al. Electrospinning of collagen: enzymatic and spectroscopic analyses reveal solvent-independent disruption of the triple-helical structure. J. Mater. Chem. B Mater. Biol. Med. 11, 2207–2218 (2023).

    Article  CAS  PubMed  Google Scholar 

  161. Prieto, E. I., Mojares, E. B. A., Cortez, J. J. M. & Vasquez, M. R. Electrospun nanofiber scaffolds for the propagation and analysis of breast cancer stem cells in vitro. Biomed. Mater. 16, 035004 (2021).

    Article  CAS  PubMed  Google Scholar 

  162. Zeugolis, D. I. et al. Electro-spinning of pure collagen nano-fibres — just an expensive way to make gelatin? Biomaterials 29, 2293–2305 (2008). This is a key study that demonstrates the difficulty in electrospinning natural materials, showing for the first time the loss of the collagen triple helix in electrospun constructs.

    Article  CAS  PubMed  Google Scholar 

  163. Jordahl, S. et al. Engineered fibrillar fibronectin networks as three-dimensional tissue scaffolds. Adv. Mater. 31, e1904580 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Hiraki, H. L. et al. Magnetic alignment of electrospun fiber segments within a hydrogel composite guides cell spreading and migration phenotype switching. Front. Bioeng. Biotechnol. 9, 679165 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Sundararaghavan, H. G., Saunders, R. L., Hammer, D. A. & Burdick, J. A. Fiber alignment directs cell motility over chemotactic gradients. Biotechnol. Bioeng. 110, 1249–1254 (2013).

    Article  CAS  PubMed  Google Scholar 

  166. Yang, F., Han, L.-H. & Tong, X. Dynamic macropore formation using multiple porogens. Patent number US20140161843A1 (2014).

  167. Ricci, C. et al. Interfacing polymeric scaffolds with primary pancreatic ductal adenocarcinoma cells to develop 3D cancer models. Biomatter 4, e955386 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Du, L. et al. Hierarchical macro/micro-porous silk fibroin scaffolds for tissue engineering. Mater. Lett. 236, 1–4 (2019).

    Article  CAS  Google Scholar 

  169. Tammaro, D., Villone, M. M., D’Avino, G. & Maffettone, P. L. An experimental and numerical investigation on bubble growth in polymeric foams. Entropy 24, 183 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Chen, G., Ushida, T. & Tateishi, T. Scaffold design for tissue engineering. Macromol. Biosci. 2, 67–77 (2002).

    Article  CAS  Google Scholar 

  171. Loh, Q. L. & Choong, C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng. B Rev. 19, 485–502 (2013).

    Article  CAS  Google Scholar 

  172. Annabi, N. et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. B Rev. 16, 371–383 (2010).

    Article  CAS  Google Scholar 

  173. Ma, P. X. Scaffolds for tissue fabrication. Mater. Today 7, 30–40 (2004).

    Article  CAS  Google Scholar 

  174. Lin, A. S. P., Barrows, T. H., Cartmell, S. H. & Guldberg, R. E. Microarchitectural and mechanical characterization of oriented porous polymer scaffolds. Biomaterials 24, 481–489 (2003).

    Article  CAS  PubMed  Google Scholar 

  175. Woo, K. M., Chen, V. J. & Ma, P. X. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J. Biomed. Mater. Res. A 67, 531–537 (2003).

    Article  PubMed  Google Scholar 

  176. Aguado, B. A. et al. Extracellular matrix mediators of metastatic cell colonization characterized using scaffold mimics of the pre-metastatic niche. Acta Biomater. 33, 13–24 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Schoof, H., Apel, J., Heschel, I. & Rau, G. Control of pore structure and size in freeze-dried collagen sponges. J. Biomed. Mater. Res. 58, 352–357 (2001).

    Article  CAS  PubMed  Google Scholar 

  178. Schoof, H., Bruns, L., Fischer, A., Heschel, I. & Rau, G. Dendritic ice morphology in unidirectionally solidified collagen suspensions. J. Cryst. Growth 209, 122–129 (2000).

    Article  CAS  Google Scholar 

  179. Kang, H. W., Tabata, Y. & Ikada, Y. Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials 20, 1339–1344 (1999).

    Article  CAS  PubMed  Google Scholar 

  180. Davidenko, N. et al. Biomimetic collagen scaffolds with anisotropic pore architecture. Acta Biomater. 8, 667–676 (2012).

    Article  CAS  PubMed  Google Scholar 

  181. Faraj, K. A., van Kuppevelt, T. H. & Daamen, W. F. Construction of collagen scaffolds that mimic the three-dimensional architecture of specific tissues. Tissue Eng. 13, 2387–2394 (2007).

    Article  CAS  PubMed  Google Scholar 

  182. Shepherd, J. H. et al. Structurally graduated collagen scaffolds applied to the ex vivo generation of platelets from human pluripotent stem cell-derived megakaryocytes: enhancing production and purity. Biomaterials 182, 135–144 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Campbell, J. J., Husmann, A., Hume, R. D., Watson, C. J. & Cameron, R. E. Development of three-dimensional collagen scaffolds with controlled architecture for cell migration studies using breast cancer cell lines. Biomaterials 114, 34–43 (2017).

    Article  CAS  PubMed  Google Scholar 

  184. Hume, R. D. et al. Tumour cell invasiveness and response to chemotherapeutics in adipocyte invested 3D engineered anisotropic collagen scaffolds. Sci. Rep. 8, 12658 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Yannas, I. V., Lee, E., Orgill, D. P., Skrabut, E. M. & Murphy, G. F. Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc. Natl Acad. Sci. USA 86, 933–937 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Hofmann, S. et al. Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds. Biomaterials 28, 1152–1162 (2007).

    Article  CAS  PubMed  Google Scholar 

  187. Lu, H., Ko, Y.-G., Kawazoe, N. & Chen, G. Cartilage tissue engineering using funnel-like collagen sponges prepared with embossing ice particulate templates. Biomaterials 31, 5825–5835 (2010).

    Article  CAS  PubMed  Google Scholar 

  188. Wolf, K. et al. Collagen-based cell migration models in vitro and in vivo. Semin. Cell Dev. Biol. 20, 931–941 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Cyr, J. A., Husmann, A., Best, S. M. & Cameron, R. E. Complex architectural control of ice-templated collagen scaffolds using a predictive model. Acta Biomater. 153, 260–272 (2022). This study demonstrates application of multi-directional temperature gradients and finite element modelling to control and predict complex fibre architectures in ice-templated collagen scaffolds.

    Article  CAS  PubMed  Google Scholar 

  190. Pawelec, K. M., Husmann, A., Best, S. M. & Cameron, R. E. A design protocol for tailoring ice-templated scaffold structure. J. R. Soc. Interface 11, 20130958 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Song, X., Philpott, M. A., Best, S. M. & Cameron, R. E. Controlling the architecture of freeze-dried collagen scaffolds with ultrasound-induced nucleation. Polymers 16, 213 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Buttafoco, L. et al. First steps towards tissue engineering of small-diameter blood vessels: preparation of flat scaffolds of collagen and elastin by means of freeze drying. J. Biomed. Mater. Res. B Appl. Biomater. 77, 357–368 (2006).

    Article  CAS  PubMed  Google Scholar 

  193. Yang, F. et al. Manufacturing and morphology structure of polylactide-type microtubules orientation-structured scaffolds. Biomaterials 27, 4923–4933 (2006).

    Article  CAS  PubMed  Google Scholar 

  194. Ashworth, J. C., Mehr, M., Buxton, P. G., Best, S. M. & Cameron, R. E. Cell invasion in collagen scaffold architectures characterized by percolation theory. Adv. Healthc. Mater. 4, 1317–1321 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Caliari, S. R. et al. Collagen scaffold arrays for combinatorial screening of biophysical and biochemical regulators of cell behavior. Adv. Healthc. Mater. 4, 58–64 (2015).

    Article  CAS  PubMed  Google Scholar 

  196. Mayorca-Guiliani, A. E. et al. ISDoT: in situ decellularization of tissues for high-resolution imaging and proteomic analysis of native extracellular matrix. Nat. Med. 23, 890–898 (2017). Here, Mayorca-Guiliani et al. develop a new tissue decellularization platform for high-resolution characterization of the 3D tumour matrix, including high-resolution mapping of collagen architecture.

    Article  CAS  PubMed  Google Scholar 

  197. Jamaluddin, M. F. B. et al. Bovine and human endometrium-derived hydrogels support organoid culture from healthy and cancerous tissues. Proc. Natl Acad. Sci. USA 119, e2208040119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Sensi, F. et al. Establishment of a human 3D pancreatic adenocarcinoma model based on a patient-derived extracellular matrix scaffold. Transl. Res. 253, 57–67 (2023).

    Article  CAS  PubMed  Google Scholar 

  199. Tian, X. et al. Organ-specific metastases obtained by culturing colorectal cancer cells on tissue-specific decellularized scaffolds. Nat. Biomed. Eng. 2, 443–452 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Fitzpatrick, L. E. & McDevitt, T. C. Cell-derived matrices for tissue engineering and regenerative medicine applications. Biomater. Sci. 3, 12–24 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Ragelle, H. et al. Comprehensive proteomic characterization of stem cell-derived extracellular matrices. Biomaterials 128, 147–159 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Rubí-Sans, G. et al. Development of cell-derived matrices for three-dimensional in vitro cancer cell models. ACS Appl. Mater. Interfaces 13, 44108–44123 (2021).

    Article  PubMed  Google Scholar 

  203. Almici, E., Caballero, D., Montero Boronat, J. & Samitier Martí, J. Engineering cell-derived matrices with controlled 3D architectures for pathophysiological studies. Methods Cell Biol. 156, 161–183 (2020).

    Article  CAS  PubMed  Google Scholar 

  204. Saldin, L. T., Cramer, M. C., Velankar, S. S., White, L. J. & Badylak, S. F. Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater. 49, 1–15 (2017).

    Article  CAS  PubMed  Google Scholar 

  205. Caballero, D. & Samitier, J. Topological control of extracellular matrix growth: a native-like model for cell morphodynamics studies. ACS Appl. Mater. Interfaces 9, 4159–4170 (2017).

    Article  CAS  PubMed  Google Scholar 

  206. Caballero, D., Palacios, L., Freitas, P. P. & Samitier, J. An interplay between matrix anisotropy and actomyosin contractility regulates 3D‐directed cell migration. Adv. Funct. Mater. 27, 1702322 (2017). Cell-derived matrices, aligned using physical templates, are used in this study to demonstrate that fibre anisotropy dictates the directionality but not distance of cell migration.

    Article  Google Scholar 

  207. Casale, C., Imparato, G., Mazio, C., Netti, P. A. & Urciuolo, F. Geometrical confinement controls cell, ECM and vascular network alignment during the morphogenesis of 3D bioengineered human connective tissues. Acta Biomater. 131, 341���354 (2021).

    Article  CAS  PubMed  Google Scholar 

  208. Wilks, B. T. et al. Quantifying cell-derived changes in collagen synthesis, alignment, and mechanics in a 3D connective tissue model. Adv. Sci. 9, e2103939 (2022).

    Article  Google Scholar 

  209. Huang, G. et al. Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem. Rev. 117, 12764–12850 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Franco-Barraza, J., Beacham, D. A., Amatangelo, M. D. & Cukierman, E. Preparation of extracellular matrices produced by cultured and primary fibroblasts. Curr. Protoc. Cell Biol. 71, 10.9.1–10.9.34 (2016).

    Article  PubMed  Google Scholar 

  211. Murphy, K. J. et al. Cell-derived matrix assays to assess extracellular matrix architecture and track cell movement. Bio. Protoc. 12, e4570 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Chan, W. W. et al. Towards biomanufacturing of cell-derived matrices. Int. J. Mol. Sci. 22, 11929 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Jones, S. et al. Application of a 3D hydrogel-based model to replace use of animals for passaging patient-derived xenografts. In Vitro Models 2, 99–111 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Conway, J. R. W. et al. Three-dimensional organotypic matrices from alternative collagen sources as pre-clinical models for cell biology. Sci. Rep. 7, 16887 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Ye, Z., Wandall, H. H. & Dabelsteen, S. Phosphoproteomic analysis and organotypic cultures for the study of signaling pathways. Bio Protoc. 14, e4941 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Yuan, H. et al. Synthetic fibrous hydrogels as a platform to decipher cell-matrix mechanical interactions. Proc. Natl Acad. Sci. USA 120, e2216934120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Baker, B. M. et al. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat. Mater. 14, 1262–1268 (2015). This study on cell response to microenvironmental stiffness in native-like extracellular matrices uses engineered synthetic fibrous materials mimicking collagen matrices.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Lim, K. S. et al. Fundamentals and applications of photo-cross-linking in bioprinting. Chem. Rev. 120, 10662–10694 (2020).

    Article  CAS  PubMed  Google Scholar 

  219. ISO/ASTM International. ISO/ASTM 52900: Additive ManufacturingGeneral PrinciplesFundamentals and Vocabulary 2nd edn (ISO, 2021).

  220. Shapira, A. & Dvir, T. 3D tissue and organ printing-hope and reality. Adv. Sci. 8, 2003751 (2021).

    Article  CAS  Google Scholar 

  221. Spagnolo, B. et al. Three-dimensional cage-like microscaffolds for cell invasion studies. Sci. Rep. 5, 10531 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Tayalia, P., Mendonca, C. R., Baldacchini, T., Mooney, D. J. & Mazur, E. 3D cell-migration studies using two-photon engineered polymer scaffolds. Adv. Mater. 20, 4494–4498 (2008).

    Article  CAS  Google Scholar 

  223. Alkmin, S. et al. Migration dynamics of ovarian epithelial cells on micro-fabricated image-based models of normal and malignant stroma. Acta Biomater. 100, 92–104 (2019). This study combines SHG imaging of ovarian tissue with multiphoton polymerization to reproduce image data representing normal and tumour tissue, applying these constructs to study the role of fibre structure in migration dynamics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Zandrini, T., Florczak, S., Levato, R. & Ovsianikov, A. Breaking the resolution limits of 3D bioprinting: future opportunities and present challenges. Trends Biotechnol. 41, 604–614 (2023).

    Article  CAS  PubMed  Google Scholar 

  225. Castilho, M. et al. Hydrogel-based bioinks for cell electrowriting of well-organized living structures with micrometer-scale resolution. Biomacromolecules 22, 855–866 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Zandrini, T. et al. Multi-foci laser microfabrication of 3D polymeric scaffolds for stem cell expansion in regenerative medicine. Sci. Rep. 9, 11761 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Atry, F. et al. Parallel multiphoton excited fabrication of tissue engineering scaffolds using a diffractive optical element. Opt. Express 28, 2744–2757 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Ouyang, W. et al. Ultrafast 3D nanofabrication via digital holography. Nat. Commun. 14, 1716 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Saha, S. K. et al. Scalable submicrometer additive manufacturing. Science 366, 105–109 (2019).

    Article  CAS  PubMed  Google Scholar 

  230. Dobos, A. et al. Thiol-gelatin-norbornene bioink for laser-based high-definition bioprinting. Adv. Healthc. Mater. 9, e1900752 (2020). This paper describes the development of a new bioink allowing rapid bioprinting of cell-containing materials by two-photon polymerization.

    Article  PubMed  Google Scholar 

  231. Puiggalí-Jou, A. et al. FLight biofabrication supports maturation of articular cartilage with anisotropic properties. Adv. Healthc. Mater. 13, e2302179 (2023).

    Article  PubMed  Google Scholar 

  232. Liu, H. et al. Filamented light (FLight) biofabrication of highly aligned tissue-engineered constructs. Adv. Mater. 34, e2204301 (2022).

    Article  PubMed  Google Scholar 

  233. Nerger, B. A., Brun, P. T. & Nelson, C. M. Microextrusion printing cell-laden networks of type I collagen with patterned fiber alignment and geometry. Soft Matter 15, 5728–5738 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Huang, Y., Agrawal, B., Sun, D., Kuo, J. S. & Williams, J. C. Microfluidics-based devices: new tools for studying cancer and cancer stem cell migration. Biomicrofluidics 5, 13412 (2011).

    Article  PubMed  Google Scholar 

  235. Sontheimer-Phelps, A., Hassell, B. A. & Ingber, D. E. Modelling cancer in microfluidic human organs-on-chips. Nat. Rev. Cancer 19, 65–81 (2019).

    Article  CAS  PubMed  Google Scholar 

  236. Davidson, P. M., Sliz, J., Isermann, P., Denais, C. & Lammerding, J. Design of a microfluidic device to quantify dynamic intra-nuclear deformation during cell migration through confining environments. Integr. Biol. 7, 1534–1546 (2015).

    Article  CAS  Google Scholar 

  237. Lee, P., Lin, R., Moon, J. & Lee, L. P. Microfluidic alignment of collagen fibers for in vitro cell culture. Biomed. Microdevices 8, 35–41 (2006).

    Article  CAS  PubMed  Google Scholar 

  238. Drifka, C. R. et al. Comparison of picrosirius red staining with second harmonic generation imaging for the quantification of clinically relevant collagen fiber features in histopathology samples. J. Histochem. Cytochem. 64, 519–529 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Marcos-Garcés, V., Harvat, M., Molina Aguilar, P., Ferrández Izquierdo, A. & Ruiz-Saurí, A. Comparative measurement of collagen bundle orientation by Fourier analysis and semiquantitative evaluation: reliability and agreement in Masson’s trichrome, picrosirius red and confocal microscopy techniques. J. Microsc. 267, 130–142 (2017).

    Article  PubMed  Google Scholar 

  240. Abd-Elgaliel, W. R. & Tung, C.-H. Exploring the structural requirements of collagen-binding peptides. Biopolymers 100, 167–173 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Haddad, T. S. et al. Tutorial: methods for three-dimensional visualization of archival tissue material. Nat. Protoc. 16, 4945–4962 (2021).

    Article  CAS  PubMed  Google Scholar 

  242. Yu, T., Zhu, J., Li, D. & Zhu, D. Physical and chemical mechanisms of tissue optical clearing. iScience 24, 102178 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Vielreicher, M. et al. Taking a deep look: modern microscopy technologies to optimize the design and functionality of biocompatible scaffolds for tissue engineering in regenerative medicine. J. R. Soc. Interface 10, 20130263 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Katsamenis, O. L. et al. X-ray micro-computed tomography for nondestructive three-dimensional (3D) X-ray histology. Am. J. Pathol. 189, 1608–1620 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Ouni, E. et al. A blueprint of the topology and mechanics of the human ovary for next-generation bioengineering and diagnosis. Nat. Commun. 12, 5603 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Bushby, A. J. et al. Imaging three-dimensional tissue architectures by focused ion beam scanning electron microscopy. Nat. Protoc. 6, 845–858 (2011).

    Article  CAS  PubMed  Google Scholar 

  247. Cicchi, R. et al. From molecular structure to tissue architecture: collagen organization probed by SHG microscopy. J. Biophotonics 6, 129–142 (2013).

    Article  CAS  PubMed  Google Scholar 

  248. Keikhosravi, A. et al. Quantification of collagen organization in histopathology samples using liquid crystal based polarization microscopy. Biomed. Opt. Express 8, 4243–4256 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Freudiger, C. W. et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322, 1857–1861 (2008). This paper describes stimulated Raman scattering microscopy for label-free in situ visualization of 3D structures in living tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Becker, L. et al. Raman microspectroscopy identifies fibrotic tissues in collagen-related disorders via deconvoluted collagen type I spectra. Acta Biomater. 162, 278–291 (2023).

    Article  CAS  PubMed  Google Scholar 

  251. Butler, H. J. et al. Using Raman spectroscopy to characterize biological materials. Nat. Protoc. 11, 664–687 (2016).

    Article  CAS  PubMed  Google Scholar 

  252. Kreiss, L. et al. Label-free analysis of inflammatory tissue remodeling in murine lung tissue based on multiphoton microscopy, Raman spectroscopy and machine learning. J. Biophotonics 15, e202200073 (2022).

    Article  CAS  PubMed  Google Scholar 

  253. Eekhoff, J. D. & Lake, S. P. Three-dimensional computation of fibre orientation, diameter and branching in segmented image stacks of fibrous networks. J. R. Soc. Interface 17, 20200371 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Liu, Z. et al. Rapid three-dimensional quantification of voxel-wise collagen fiber orientation. Biomed. Opt. Express 6, 2294–2310 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Wershof, E. et al. A FIJI macro for quantifying pattern in extracellular matrix. Life Sci. Alliance 4, e202000880 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Devlin, M.-J. et al. The tumor microenvironment of clear-cell ovarian cancer. Cancer Immunol. Res. 10, 1326–1339 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Liu, Y. et al. Fibrillar collagen quantification with curvelet transform based computational methods. Front. Bioeng. Biotechnol. 8, 198 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Sorelli, M. et al. Fiber enhancement and 3D orientation analysis in label-free two-photon fluorescence microscopy. Sci. Rep. 13, 4160 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Bumgarner, J. R. & Nelson, R. J. Open-source analysis and visualization of segmented vasculature datasets with VesselVio. Cell Rep. Methods 2, 100189 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Spangenberg, P. et al. Rapid and fully automated blood vasculature analysis in 3D light-sheet image volumes of different organs. Cell Rep. Methods 3, 100436 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Sapudom, J. et al. Collagen fibril orientation instructs fibroblast differentiation via cell contractility. Adv. Sci. 10, e2301353 (2023).

    Article  Google Scholar 

  262. Joukhdar, H. et al. Imparting multi‐scalar architectural control into silk materials using a simple multi‐functional ice‐templating fabrication platform. Adv. Mater. Technol. https://doi.org/10.1002/admt.202201642 (2023).

  263. Joshi, I. M. et al. Microengineering 3D collagen matrices with tumor-mimetic gradients in fiber alignment. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202308071 (2023).

  264. Osuna de la Peña, D. et al. Bioengineered 3D models of human pancreatic cancer recapitulate in vivo tumour biology. Nat. Commun. 12, 5623 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Vega, S. L. et al. Combinatorial hydrogels with biochemical gradients for screening 3D cellular microenvironments. Nat. Commun. 9, 614 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Yang, Y., Motte, S. & Kaufman, L. J. Pore size variable type I collagen gels and their interaction with glioma cells. Biomaterials 31, 5678–5688 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.R.C. is supported by the National Health and Medical Research Council (NHMRC) of Australia and Cancer Council NSW (CCNSW). J.C.A. is funded by the University of Nottingham (Anne McLaren fellowship).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to J. C. Ashworth or T. R. Cox.

Ethics declarations

Competing interests

J.C.A. is a co-founder, shareholder and scientific advisory board member of Peptimatrix Ltd. T.R.C. declares no competing interest.

Peer review

Peer review information

Nature Reviews Cancer thanks E. L. Shan Fong, K. Killian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Additive manufacturing

The process of building an object based on 3D data, usually layer by layer, encompassing methods that directly deposit materials using a print head or similar (commonly grouped together as ‘3D printing’), as well as other techniques such as light-activated polymerization.

Amorphous collagen

Collagen molecules that are not organized into fibrous or fibrillar structures.

Anastomosis

A connection between two passageways, such as where two previously independent, discrete blood vessels subsequently join.

Atomic force microscopy

A technique used for mapping the atomic-scale topography of a surface by means of the repulsive electronic forces between the surface and the tip of a microscope probe moving above the surface.

Basement membrane

Structure visible by light microscopy and, in addition to the basal lamina, that consist of layers that are typically secreted by cells from underlying connective tissue; many basement membranes are rich in fibronectin.

Cell jamming

A collective cell behaviour observed in densely packed groups of cells such as tumours, wherein they exhibit solid-like properties akin to jammed granular materials.

Collective invasion

A mode of migration in which groups of cells move together as a cohesive unit through the surrounding extracellular matrix.

Extrusion

A printing approach in which a continuous strand of material is deposited.

Fibrillar

Indicates that a molecule or substance has formed, or is intrinsically capable of forming, elongated units, that is, fibres, which in the ECM are often hierarchical, containing structure on multiple length scales.

Integrin switching

A process in which cells dynamically alter integrin expression, engagement and/or activation. For example, during cancer metastasis, tumour cells may undergo integrin switching to acquire a more invasive phenotype, enabling them to detach from the primary tumour and invade surrounding tissues.

Interstitial matrix

The space that exits between cells within a tissue or organ, and generally contains a high level of structural proteins, wherein collagen I and fibronectin are the main components in many tissues.

Light-responsive biomaterial

A biomaterial that can undergo reversible or irreversible changes in its properties or functions upon exposure to light.

Micro-CT

A non-destructive imaging technique that uses X-rays and computed tomography (CT) to produce detailed three-dimensional images of objects at a microscopic scale.

Microtracks

Narrow, often microscopic-scale pathways or channels within the 3D matrix structure that can guide the movement or alignment of cells.

Scanning electron microscopy

(SEM). A high-resolution imaging technique that deploys a focused beam of electrons to scan the surface of the sample.

Shear stress

A type of stress, defined as force per unit area, caused by forces acting parallel to a surface, leading to a deformation or displacement.

Tunnelling nanotubes

(TNTs). Actin-based membrane protrusions that form cell–cell contacts.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashworth, J.C., Cox, T.R. The importance of 3D fibre architecture in cancer and implications for biomaterial model design. Nat Rev Cancer 24, 461–479 (2024). https://doi.org/10.1038/s41568-024-00704-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-024-00704-8

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer