Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Association of Crohn’s disease and ulcerative colitis with the risk of neurological diseases: a large-scale Mendelian randomization study

Abstract

Observational studies suggested increased risks of Alzheimer’s disease (AD), Parkinson’s disease (PD), and multiple sclerosis (MS) in patients with Crohn’s disease (CD) and ulcerative colitis (UC). We aimed to assess the causality for the associations of CD and UC with the risks of AD, PD, and MS through a two-sample Mendelian randomization (MR) study. Independent single nucleotide polymorphisms associated with CD (17,897 cases and 33,977 controls) and UC (13,768 cases and 33,977 controls) were identified as genetic instruments based on a European-descent genome-wide association study (GWAS) released by the International Inflammatory Bowel Disease Genetics Consortium. Summary statistics for AD (combined: 25,881 cases and 256,837 controls), PD (combined: 35,836 cases and 665,686 controls), and MS (combined: 48,477 cases and 285,515 controls) were obtained from the largest GWASs and FinnGen study of European ancestry, respectively. MR estimates were generated using the inverse-variance weighted method in the main analysis with a series of sensitivity analyses. MR analyses were conducted per outcome database and were subsequently meta-analyzed to generate combined estimates. Genetically predicted UC was significantly associated with increased risks of AD (combined: OR, 1.03; 95% CI, 1.01–1.05; P = 1.80 × 10−3) and MS (combined: OR, 1.37; 95% CI, 1.23–1.53; P = 1.18 × 10−8), while there was no association between genetically predicted UC and the risk of PD. In contrast, no significant associations were observed for genetically predicted CD with AD, PD, and MS. MR-Egger regression showed no directional pleiotropy for the identified associations, and sensitivity analyses with different MR methods further confirmed these findings. This study suggested significant adverse effects of UC on AD and MS, highlighting that UC patients should receive early intervention with optimal adjunctive medical therapy to reduce the risks of AD and MS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hodson R. Inflammatory bowel disease. Nature. 2016;540:S97.

    Article  CAS  PubMed  Google Scholar 

  2. Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474:307–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Collaborators GIBD. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. lancet Gastroenterol Hepatol. 2020;5:17–30.

    Article  Google Scholar 

  4. Ferro JM, Oliveira Santos M. Neurology of inflammatory bowel disease. J Neurological Sci. 2021;424:117426.

    Article  CAS  Google Scholar 

  5. Niesler B, Kuerten S, Demir IE, Schäfer KH. Disorders of the enteric nervous system - a holistic view. Nat Rev Gastroenterol Hepatol. 2021;18:393–410.

    Article  PubMed  Google Scholar 

  6. Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N, et al. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:459–80.

    Article  Google Scholar 

  7. Zhang B, Wang HE, Bai YM, Tsai SJ, Su TP, Chen TJ, et al. Inflammatory bowel disease is associated with higher dementia risk: a nationwide longitudinal study. Gut. 2021;70:85–91.

    Article  PubMed  Google Scholar 

  8. Weimers P, Halfvarson J, Sachs MC, Saunders-Pullman R, Ludvigsson JF, Peter I, et al. Inflammatory Bowel Disease and Parkinson’s Disease: A Nationwide Swedish Cohort Study. Inflamm Bowel Dis. 2019;25:111–23.

    Article  PubMed  Google Scholar 

  9. Gupta G, Gelfand JM, Lewis JD. Increased risk for demyelinating diseases in patients with inflammatory bowel disease. Gastroenterology. 2005;129:819–26.

    Article  PubMed  Google Scholar 

  10. Fu P, Gao M, Yung KKL. Association of Intestinal Disorders with Parkinson’s Disease and Alzheimer’s Disease: A Systematic Review and Meta-Analysis. ACS Chem Neurosci. 2020;11:395–405.

    Article  CAS  PubMed  Google Scholar 

  11. Wang X, Wan J, Wang M, Zhang Y, Wu K, Yang F. Multiple sclerosis and inflammatory bowel disease: A systematic review and meta-analysis. Ann Clin Transl Neurol. 2022;9:132–40.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zheng J, Baird D, Borges MC, Bowden J, Hemani G, Haycock P, et al. Recent Developments in Mendelian Randomization Studies. Curr Epidemiol Rep. 2017;4:330–45.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lee K, Lim CY. Mendelian Randomization Analysis in Observational Epidemiology. J Lipid Atherosclerosis. 2019;8:67–77.

    Article  CAS  Google Scholar 

  14. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23:R89–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47:979–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet. 2019;51:414–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nalls MA, Blauwendraat C, Vallerga CL, Heilbron K, Bandres-Ciga S, Chang D, et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 2019;18:1091–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Patsopoulos NA, Baranzini SE, Santaniello A, Shoostari P, Cotsapas C, Wong G, et al. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science. 2019;365:eaav7188.

    Article  CAS  Google Scholar 

  19. Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner K, et al. FinnGen: Unique genetic insights from combining isolated population and national health register data. medRxiv. 2022. https://www.medrxiv.org/content/10.1101/2022.03.03.22271360v1.

  20. Dastani Z, Hivert MF, Timpson N, Perry JR, Yuan X, Scott RA, et al. Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals. PLoS Genet. 2012;8:e1002607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Burgess S, Thompson SG. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol. 2011;40:755–64.

    Article  PubMed  Google Scholar 

  22. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37:658–65.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet Epidemiol. 2016;40:304–14.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hartwig FP, Davies NM, Hemani G, Davey Smith G. Two-sample Mendelian randomization: avoiding the downsides of a powerful, widely applicable but potentially fallible technique. Int J Epidemiol. 2016;45:1717–26.

    Article  PubMed  Google Scholar 

  25. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife. 2018;7:e34408.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ong JS, MacGregor S. Implementing MR-PRESSO and GCTA-GSMR for pleiotropy assessment in Mendelian randomization studies from a practitioner’s perspective. Genet Epidemiol. 2019;43:609–16.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG. Sensitivity Analyses for Robust Causal Inference from Mendelian Randomization Analyses with Multiple Genetic Variants. Epidemiology. 2017;28:30–42.

    Article  PubMed  Google Scholar 

  28. Hemani G, Tilling K, Davey Smith G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 2017;13:e1007081.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kim GH, Lee YC, Kim TJ, Kim ER, Hong SN, Chang DK, et al. Risk of Neurodegenerative Diseases in Patients with Inflammatory Bowel Disease: A Nationwide Population-based Cohort Study. J Crohns Colitis. 2022;16:436–43.

  30. Sand JR, Troelsen FS, Horváth-Puhó E, Henderson VW, Sørensen HT, Erichsen R. Risk of dementia in patients with inflammatory bowel disease: a Danish population-based study. Aliment Pharmacol Ther. 2022;56: 831–43.

  31. Zhu Y, Yuan M, Liu Y, Yang F, Chen WZ, Xu ZZ, et al. Association between inflammatory bowel diseases and Parkinson’s disease: systematic review and meta-analysis. Neural Regen Res. 2022;17:344–53.

    Article  CAS  PubMed  Google Scholar 

  32. Kosmidou M, Katsanos AH, Katsanos KH, Kyritsis AP, Tsivgoulis G, Christodoulou D, et al. Multiple sclerosis and inflammatory bowel diseases: a systematic review and meta-analysis. J Neurol. 2017;264:254–9.

    Article  CAS  PubMed  Google Scholar 

  33. Bernstein CN, Wajda A, Blanchard JF. The clustering of other chronic inflammatory diseases in inflammatory bowel disease: a population-based study. Gastroenterology. 2005;129:827–36.

    Article  PubMed  Google Scholar 

  34. Rubin DT, Ananthakrishnan AN, Siegel CA, Sauer BG, Long MD. ACG Clinical Guideline: Ulcerative Colitis in Adults. Am J Gastroenterol. 2019;114:384–413.

    Article  PubMed  Google Scholar 

  35. Lichtenstein GR, Loftus EV, Isaacs KL, Regueiro MD, Gerson LB, Sands BE. ACG Clinical Guideline: Management of Crohn’s Disease in Adults. Am J Gastroenterol. 2018;113:481–517.

    Article  PubMed  Google Scholar 

  36. Bryant RV, Winer S, Travis SP, Riddell RH. Systematic review: histological remission in inflammatory bowel disease. Is ‘complete’ remission the new treatment paradigm? An IOIBD initiative. J Crohns Colitis. 2014;8:1582–97.

    Article  CAS  PubMed  Google Scholar 

  37. Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimers Dementia. 2016;12:719–32.

  38. Lee HS, Lobbestael E, Vermeire S, Sabino J, Cleynen I. Inflammatory bowel disease and Parkinson’s disease: common pathophysiological links. Gut. 2021;70:408–17.

    CAS  PubMed  Google Scholar 

  39. Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O. Multiple sclerosis. Lancet. 2018;391:1622–36.

    Article  PubMed  Google Scholar 

  40. Westfall S, Lomis N, Kahouli I, Dia SY, Singh SP, Prakash S. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell Mol Life Sci. 2017;74:3769–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kesika P, Suganthy N, Sivamaruthi BS, Chaiyasut C. Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer’s disease. Life Sci 2021;264:118627.

    Article  CAS  PubMed  Google Scholar 

  42. Zac-Varghese S, Tan T, Bloom SR. Hormonal interactions between gut and brain. Discov Med. 2010;10:543–52.

    PubMed  Google Scholar 

  43. Antoni L, Nuding S, Wehkamp J, Stange EF. Intestinal barrier in inflammatory bowel disease. World J Gastroenterol. 2014;20:1165–79.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Green C, Elliott L, Beaudoin C, Bernstein CN. A population-based ecologic study of inflammatory bowel disease: searching for etiologic clues. Am J Epidemiol. 2006;164:615–23.

    Article  PubMed  Google Scholar 

  45. Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009;361:2066–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang Y, Musco H, Simpson-Yap S, Zhu Z, Wang Y, Lin X, et al. Investigating the shared genetic architecture between multiple sclerosis and inflammatory bowel diseases. Nat Commun. 2021;12:5641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brumpton B, Sanderson E, Heilbron K, Hartwig FP, Harrison S, Vie G, et al. Avoiding dynastic, assortative mating, and population stratification biases in Mendelian randomization through within-family analyses. Nat Commun. 2020;11:3519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Burgess S, Davies NM, Thompson SG. Bias due to participant overlap in two-sample Mendelian randomization. Genet Epidemiol. 2016;40:597–608.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the authors and participants of all GWASs used, for making their results publicly available. We also acknowledge the participants and investigators of the FinnGen study. Full acknowledgement and funding statements for each of these resources are available via the relevant cited reports.

Funding

This study was supported by the National Natural Science Foundation of China (grant: 82103921 and 82020108028) and the Natural Science Research Project of Jiangsu Provincial Higher Education (grant: 21KJB330006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daoxia Guo or Zhengbao Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Jia, Y., Xu, Q. et al. Association of Crohn’s disease and ulcerative colitis with the risk of neurological diseases: a large-scale Mendelian randomization study. J Hum Genet (2024). https://doi.org/10.1038/s10038-024-01271-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s10038-024-01271-4

Search

Quick links